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Balanced Search Trees 
 

What is a Balanced Binary Search Tree: A balanced binary search tree is a tree that 

automatically keeps its height small (guaranteed to be logarithmic) for a sequence of 

insertions and deletions. This structure provides efficient implementations for abstract data 

structures such as associative arrays. 
 

Underlying Motivation: Most operations on a binary search tree (BST) take time proportional 

to the height of the tree. Desirable to keep the height small. 
 

Approach to Balance: The primary step to get the flexibility needed to guarantee balance in 

binary search trees is to allow the nodes in our trees to hold more than one key. This may be 

achieved using 2–3 search trees (not binary, but balanced). 
 

2-3 Search Trees: The 2-3 tree structure generalizes BSTs and provides the needed flexibility to 

guarantee fast operations. The 2-3 tree allows 1 or 2 keys per node – it allows for the possibility 

of a 3-node and a 2-node: 

 2-node: one key, two children, left is less than key / right is greater than key 

 3-node: two keys, three children, left is less than key / middle is between / right is greater 

than the two keys.  
 

Properties of 2-3 Trees: 2-3 trees maintain: 

 Perfect Balance: Every path from the root to the null link has the same length.  

 Symmetric Order: Every node is larger than all the nodes on the left subtree, smaller than 

the keys on the right subtree, and in case of 3-node, all nodes in the middle are between 

the two keys of the 3-node. Thus, traversal of the nodes can take place in ascending order; 

In-order traversal.  
 

Operations Overview: Main operations are to search in the tree and add into it.  

 Search: Searching for an item in a 2–3 tree is similar to searching for an item in a binary 

search tree since it maintains a symmetric order. In other terms, we compare between the 

given key against the key(s) in the node. If smaller than this key, go left. If between the 

two keys (of a 3-node), go to the middle link. If greater than this key, go right. 

 Insert (into a 2-node): All insertion operations start with searching for the node (at the 

bottom) where one can insert the new node into it. If the node at which the search 

terminates is a 2-node, we just replace it with a 3-node containing its key and the new key 

to be inserted. 

 Insert (into a 3-node): Suppose that we want to insert into a single 3-node. Such a node 

has no room for a new key. Thefore, to be able to perform this insertion, we temporarily 
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convert the 3-node into a 4-node (a node with three keys, and four children). Then, we split the 4-node into three 2-

nodes, one with the middle key (at the root), one with the smallest of the three keys (pointed to by the left link of the 

root), and one with the largest of the three keys (pointed to by the right link of the root).  
 Insert (into a 3-node whose 

parent is a 2-node): Suppose 

that the search ends at a 3-

node at the bottom whose 

parent is a 2-node. In this case, 

we follow the same steps as 

with a temporary 4-node, then 

splitting the 4-node, but then, instead of creating a new node to hold the middle key, we move the middle key to 

the parent node (2-node). 

 Insert (into a 3-node whose parent is a 3-node): Suppose that 

the search ends at a 3-node at the bottom whose parent is a 

3-node. Again, we make a temporary 4-node, afterwards split 

the 4-node, moving the middle key to the parent node (3-

node). Since the parent node is a 3-node, we convert it into 

a temporary new 4-node. Then, we perform exactly the same 

transformation on that node. We continue doing this transformation as we go up the tree; splitting 4-nodes and moving the middle keys to their 

parents until reaching a 2-node, which we replace it with a 3-node that does not to be further split, or until reaching a 3-node at the root. 
 

Operations in 2-3 Trees: Only constant 

number of operations are needed to do 

the transformation of splitting a 4-node, 

and also converting 3-node to 4-node 

and so on. These transformations 

preserve the properties of a 2–3 tree that 

the tree is in a symmetric order and perfectly balanced. This is because, when we insert or move keys around, 

we keep the keys in order; we maintain a symmetric order. Furthermore, we increase the height of the tree 

when we end up with a temporary 4-node at the root. In this case, we split the temporary 4-node into three 2-

nodes. Therefoe, we can still split the root node (4-node) while maintaining perfect balance in the tree.  
 

Analysis: The cost of these operations is proportional to the height of the tree. Since it maintains 

a perfect black balance tree. It guarantees performance of 𝑂(𝑙𝑜𝑔𝑁) in all operations. 

 The worst case when all the nodes are 2-nodes; tree height is 𝑙𝑜𝑔𝑁. 

 The best case when all the nodes are 3-nodes; tree height is 𝑙𝑜𝑔𝑁 (to the base of 3).  
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