
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Heaps

The ADT Heap

• A “heap” is a complete binary tree that is either:

• Empty or

• Whose root contains a value >= each of its children and has heaps as its subtrees

The ADT Heap

• A “heap” is a complete binary tree that is either:

• Empty or

• Whose root contains a value >= each of its children and has heaps as its subtrees

• It is a special binary tree – different from what we discussed so far in that:

• It is ordered in a weaker sense

• It will always be a complete binary tree

The ADT Heap

• Maxheap: A heap the root of which contains the item with the largest value.

• Minheap: a heap the root of which contains the item with the smallest value.

The ADT Heap

• A maxheap (a) and a minheap (b)

The ADT Heap

• ADT heap operations

• Test whether a heap is empty

• Get the number of nodes in a heap

• Get the height of a heap

• Get the data item in the heap’s root

• Add a new data item to the heap

• Remove the data item in the heap’s root

• Remove all data from the heap

The ADT Heap
Abstract Data Type: Heap

DATA

• A finite number of objects in hierarchical order

OPERATIONS

PSEUDOCODE DESCRIPTION

isEmpty() Task: Sees whether this heap is empty.
Input: None.
Output: Tree if the heap is empty; otherwise false.

getNumberOfNodes() Task: Gets the number of nodes in the heap.
Input: None.
Output: The number of nodes in the heap.

getHeight() Task: Gets the height of this heap.
Input: None.
Output: The height of the heap.

peekTop() Task: Gets the data that is in the root (top) of this heap.
Input: None. Assumes the heap is not empty.
Output: The data item in the root of the heap. If a maxheap, this data is the largest value. If a minheap, the data is the smallest value.

add(newData) Task: Adds a new data item to this heap.
Input: newData is the data item to be added.
Output: True if the addition is successful, or false if not.

remove() Task: Removes the data item in the root of this heap.
Input: None.
Output: True if the removal is successful, false otherwise

clear() Task: Removes all data from this heap.
Input: None.
Output: The heap is empty.

The ADT Heap

• UML diagram for the class Heap

Heap

+isEmpty(): boolean

+getNumberOfNodes(): integer

+getHeight(): integer

+peekTop(): ItemType

+add(newData: ItemType): boolean

+remove(): boolean

+clear(): void

UML Notation

The ADT Heap

• An interface for the ADT heap

// Interface for the ADT heap

#ifndef HEAP_INTERFACE_

#define HEAP_INTERFACE_

template<class ItemType>

class HeapInterface

{

public:

// Sees whether this heap is empty.

// @return True if the heap is empty, or false if not.

virtual bool isEmpty() const = 0;

// Gets the number of nodes in this heap.

// @return The number of nodes in the heap.

virtual int getHeight() const = 0;

The ADT Heap

• An interface for the ADT heap

// Gets the data that is in the root (top) of this heap.

// For a maxheap, the data is the largest value in the heap;

// For a minheap, the data is the smallest value in the heap.

//

// @pre The heap is not empty

// @post The root’s data has been returned, and the heap is unchanged.

// @return The data in the root of the heap

virtual ItemType peekTop() const = 0;

// Adds a new data item to this heap.

// @param newData The data to be added.

// @post The heap has a new node that contains newData.

// @return True if the addition is successful, or false otherwise

virtual bool add(const ItemType& newData) = 0;

// Removes the data that is in the root (top) of this heap.

// @return True if the removal is successful, or false if not.

virtual bool remove() = 0;

The ADT Heap

• An interface for the ADT heap

// Removes all data from this heap

virtual void clear() = 0;

// Destroys this heap and frees its assigned memory

virtual ~HeapInterface() { }

}; // end HeapInterface

#endif

Array-based Implementation of a Heap

• A heap is a binary tree.

Array-based Implementation of a Heap

• A heap is a binary tree.

• Any approach to implement a binary tree can be used to implement the heap.

Array-based Implementation of a Heap

• A heap is a binary tree.

• Any approach to implement a binary tree can be used to implement the heap.

• Among others one can use the array-based implementation of the binary tree if you
know the maximum size of a heap.

Array-based Implementation of a Heap

• A heap is a binary tree.

• Any approach to implement a binary tree can be used to implement the heap.

• Among others one can use the array-based implementation of the binary tree if you
know the maximum size of a heap.

• However

• Because a heap is a complete binary tree, we can use a simpler array-based
implementation that saves memory.

Array-based Implementation of a Heap

• A heap is a binary tree.

• Any approach to implement a binary tree can be used to implement the heap.

• Among others one can use the array-based implementation of the binary tree if you
know the maximum size of a heap.

• However

• Because a heap is a complete binary tree, we can use a simpler array-based
implementation that saves memory.

• Reminder

• A complete tree of height h is full to level h-1 and has level h filled from left to right.

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

• Place nodes into array items in numeric order

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

• Place nodes into array items in numeric order

• items[i] contains the node numbered i

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

• Place nodes into array items in numeric order

• items[i] contains the node numbered i

• Localization of parent & children of items[i]

• Left child, if exists = items[2 * i + 1]

• Right child, if exists = items[2 * i +2]

• Parent, if exists = items[(i-1) / 2]

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

• Place nodes into array items in numeric order

• items[i] contains the node numbered i

• Localization of parent & children of items[i]

• Left child, if exists = items[2 * i + 1]

• Right child, if exists = items[2 * i +2]

• Parent, if exists = items[(i-1) / 2]

• Only node without a parent is the root (items[0])

Array-based Implementation of a Heap

• A complete binary tree and its array-based implementation

• Place nodes into array items in numeric order

• items[i] contains the node numbered i

• Localization of parent & children of items[i]

• Left child, if exists = items[2 * i + 1]

• Right child, if exists = items[2 * i +2]

• Parent, if exists = items[(i-1) / 2]

• Only node without a parent is the root (items[0])

• This numbering requires a complete tree

Algorithms for Array-based Heap
Operations
• Assume following private data members

• items: an array of heap items

• itemCount: an integer equal to the number of items in the heap

• maxItems: an integer equal to the maximum capacity of the heap

Algorithms for Array-based Heap
Operations
• Assume following private data members

• items: an array of heap items

• itemCount: an integer equal to the number of items in the heap

• maxItems: an integer equal to the maximum capacity of the heap

• The array items corresponds to the array-based representation of a complete binary tree

Algorithms for Array-based Heap
Operations
• Assume following private data members

• items: an array of heap items

• itemCount: an integer equal to the number of items in the heap

• maxItems: an integer equal to the maximum capacity of the heap

• The array items corresponds to the array-based representation of a complete binary tree

• We assume that we are working with a maximum heap of integers

Algorithms for Array-based Heap
Operations
• Retrieving an item from the heap.

• Consider peekTop operation

• Largest value at the root

• Therefore: return items[0]

Algorithms for Array-based Heap
Operations
• Removing an item from a heap

• Consider the case of root removal

Algorithms for Array-based Heap
Operations
• Disjoint heaps after removing the heap’s root

Algorithms for Array-based Heap
Operations
• Removing an item from a heap

• Consider the case of root removal

• Naïve root removal leads to disjoint heaps

Algorithms for Array-based Heap
Operations
• Removing an item from a heap

• Consider the case of root removal

• Naïve root removal leads to disjoint heaps

• Solution

• Remove the last node of the tree and place its item in the root

• This is not necessarily a heap but it remains a complete binary tree whose left and right
subtrees are both heaps

• This is a semiheap

• We need to transform a semiheap into a heap.

• Allow the item in the root to trickle down (bubble down) the tree until it reaches a
node in which it will not be out of place.

• First compare the item in the root of the semiheap to the items in its children.

• Swap the item in the root with that larger item if one is found.

• Iterate this process.

Algorithms for Array-based Heap
Operations

Algorithms for Array-based Heap
Operations
• We need to implement two steps, namely root removal and semiheap to heap

restoration
// Copy the item from the last node and place it into the root

items[0] = items[itemCount-1]

/ Remove the last node

itemCount--

Algorithms for Array-based Heap
Operations
• Recursive algorithm to transform semiheap to heap

// Converts a semiheap rooted at index nodeIndex into a heap.

heapRebuild(nodeIndex: integer, items: ArrayType, itemCount: integer): void

{

// Recursively trickle the item at index nodeIndex down to its proper position by

// swapping it with its larger child, if the child is larger than the item.

// If the item is at a leaf, nothing needs to be done.

if (the root is not a leaf)

{

// The root must have a left child; find larger child

leftChildIndex = 2 * rootIndex + 1

rightChildIndex = leftChildIndex + 1

largerChildIndex = rightChildIndex // Assume right child exists and is the larger

Algorithms for Array-based Heap
Operations
• Recursive algorithm to transform semiheap to heap

// Check whether right child exists; if so, is left child larger?

// If no right child, left one is larger

if ((largerChildIndex >= itemCount) || (items[leftChildIndex] > items[rightChildIndex]))

largerChildIndex = leftChildIndex; // Assumption was wrong

if (items[nodeIndex] < items[largerChildIndex])

{

Swap items[nodeIndex] and items[largerChildIndex]

// Transform the semiheap rooted at largerChildIndex into a heap

heapRebuild(largerChildIndex, items, itemCount)

}

}

// Else root is a leaf, so you are done

}

Algorithms for Array-based Heap
Operations

Algorithms for Array-based Heap
Operations
• Recursive calls to heapRebuild

Algorithms for Array-based Heap
Operations
• Finally, heap’s remove operation using heapRebuild is as follows

// Copy the item from the last node into the root

items[0] = items[itemCount – 1]

// Remove the last node

itemCount—-

// Transform the semiheap back into a heap

heapRebuild(0, items, itemCount)

Algorithms for Array-based Heap
Operations
• Remove is O(logn)

Algorithms for Array-based Heap
Operations
• Adding a data item to a heap

Algorithms for Array-based Heap
Operations
• Adding a data item to a heap

• A new data item is placed at the bottom of the tree

• It then bubbles up to its proper place

Algorithms for Array-based Heap
Operations
• Adding 15 to a heap

Algorithms for Array-based Heap
Operations
• Pseudocode for add

add(newData: itemType): boolean

{

// Place newData at the bottom of the tree

items[itemCount] = newData

// Make new item bubble up to the appropriate spot in the tree

newDataIndex = itemCount

inPlace = false

while ((newDataIndex >= 0) and !inPlace)

{

parentIndex = (newDataIndex – 1) / 2

if (items[newDataIndex] <= items[parentIndex])

inPlace = true

else

Swap items[newDataIndex] and items[parentIndex]

newDataIndex = parentIndex

}

}

itemCount++

return inPlace

}

The Implementation

• The header file for the class ArrayMaxHeap

// ---

// Most of the private utility methods use an array index as a parameter and in

// calculations. This should be safe, even though the array is an implementation

// detail, since the methods are private.

// ---

// Returns the array index of the child (if it exists)

int getLeftChildIndex(const int nodeIndex) const;

// Returns the array index of the right child (if it exists)

int getRightChildIndex(int nodeIndex) const;

// Returns the array index of the parent node.

int getParentIndex(int nodeIndex) const;

// Tests whether this node is a leaf.

bool isLeaf(int nodeIndex) const;

The Implementation

• The header file for the class ArrayMaxHeap

// Converts a semiheap to a heap

void heapRebuild(int nodeIndex);

// Creates a heap from an unordered array

void heapCreate();

public:

ArrayMaxHeap();

ArrayMaxHeap(const ItemType someArray[], const int arraySize);

virtual ~ArrayMaxHeap();

// HeapInterface Public Methods

bool isEmpty() const;

int getNumberOfNodes() const;

int getHeight() const;

ItemType peekTop() const throw(PrecondViolatedExcept);

bool add(const ItemType& newData);

bool remove();

void clear();

}; // end ArrayMaxHeap

#include “ArrayMaxHeap.cpp”

#endif

The Implementation

• Definition of method getLeftChildIndex

template<class ItemType>

int ArrayMaxHeap<ItemType>::getLeftChildIndex(const int nodeIndex) const

{

return (2 * nodeIndex) + 1;

} // end getLeftChildIndex

The Implementation

• Definition of method getLeftChildIndex

template<class ItemType>

int ArrayMaxHeap<ItemType>::getLeftChildIndex(const int nodeIndex) const

{

return (2 * nodeIndex) + 1;

} // end getLeftChildIndex
Outcome of how the heap is built

The Implementation

• Definition of the constructor (must use heapRebuild)

template<class ItemType>

ArrayMaxHeap<ItemType>::

ArrayMaxHeap(const ItemType someArray[], const int arraySize):

itemCount(arraySize), maxItems(2 * arraySize)

{

// Allocate the array

items = std::make_unique<ItemType[]>(maxItems);

// Copy given values into the array

for (int = 0; i < itemCount; i++)

items[i] = someArray[i];

// Recognize the array into a heap

heapCreate();

} // end constructor

The Implementation

• Definition of the constructor (must use heapRebuild)

template<class ItemType>

ArrayMaxHeap<ItemType>::

ArrayMaxHeap(const ItemType someArray[], const int arraySize):

itemCount(arraySize), maxItems(2 * arraySize)

{

// Allocate the array

items = std::make_unique<ItemType[]>(maxItems);

// Copy given values into the array

for (int = 0; i < itemCount; i++)

items[i] = someArray[i];

// Recognize the array into a heap

heapCreate();

} // end constructor

The Implementation

• Definition of the constructor (must use heapRebuild)

template<class ItemType>

ArrayMaxHeap<ItemType>::

ArrayMaxHeap(const ItemType someArray[], const int arraySize):

itemCount(arraySize), maxItems(2 * arraySize)

{

// Allocate the array

items = std::make_unique<ItemType[]>(maxItems);

// Copy given values into the array

for (int = 0; i < itemCount; i++)

items[i] = someArray[i];

// Recognize the array into a heap

heapCreate();

} // end constructor

• heapCreate must form a heap from the values in the array items.
• One way to do so is to use the heap’s add method to add the data

items to the heap one by one. But a more efficient way is possible.

• Image the array as a complete binary tree

• Transform this tree into a heap by calling heapRebuild repeatedly

• Observation: every leaf is a semiheap

The Implementation

• Array and its corresponding complete binary tree

The Implementation

• Building a heap from an array of data

for (index = itemCount – 1 down to 0)

{

// Assertion: The tree rooted at index is a semiheap

heapRebuild(index)

// Assertion: The tree rooted at index is a heap

}

The Implementation

• Building a heap from an array of data: possible improvement.

for (index = itemCount / 2 – 1 down to 0)

{

// Assertion: The tree rooted at index is a semiheap

heapRebuild(index)

// Assertion: The tree rooted at index is a heap

}

Why?

The Implementation

• Transforming an array into a heap

The Implementation

• Method heapCreate

template<class ItemType>

void ArrayMaxHeap<ItemType>::heapCreate()

{

for (int index = itemCount / 2 - 1; index >= 0; index--)

heapRebuild(index)

} // end heapCreate

The Implementation

• Method peekTop which tests for an empty heap

template<class ItemType>

ItemType ArrayMaxHeap<ItemType>::peekTop() const throw(PrecondViolatedExcept)

{

if (isEmpty())

throw PrecondViolatedExcept(“Attempted peek into an empty heap.”);

return items[0];

} // end peekTop

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

• The implementation of the priority queue can reuse ArrayMaxHeap

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

• The implementation of the priority queue can reuse ArrayMaxHeap

• We could use an instance of ArrayMaxHeap as a data member of the class of priority queues,
or we can consider inheritance.

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

• The implementation of the priority queue can reuse ArrayMaxHeap

• We could use an instance of ArrayMaxHeap as a data member of the class of priority queues,
or we can consider inheritance.

• Although a heap provides an implementation for a priority queue, a priority queue is not a
heap.

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

• The implementation of the priority queue can reuse ArrayMaxHeap

• We could use an instance of ArrayMaxHeap as a data member of the class of priority queues,
or we can consider inheritance.

• Although a heap provides an implementation for a priority queue, a priority queue is not a
heap.

• Since an is-a relationshops does not exist between ArrayMaxHeap and the class of priority
queues, public inheritance is not appropriate.

Heap Implementation of the ADT Priority
Queue
• Provided ADT heap, the implementation of the ADT Priority Queue is straightforward

• The priority value in a priority queue item corresponds to an item in a heap.

• The implementation of the priority queue can reuse ArrayMaxHeap

• We could use an instance of ArrayMaxHeap as a data member of the class of priority queues,
or we can consider inheritance.

• Although a heap provides an implementation for a priority queue, a priority queue is not a
heap.

• Since an is-a relationshops does not exist between ArrayMaxHeap and the class of priority
queues, public inheritance is not appropriate.

• We can use private inheritance instead.

Heap Implementation of the ADT Priority
Queue
• A header file for the class HeapPriorityQueue

// ADT Priority Queue: Heap-based Implementation

#ifndef HEAP_PRIORITY_QUEUE_

#define HEAP_PRIORITY_QUEUE_

#include “ArrayMaxHeap.h”

#include “PriorityQueueInterface.h”

template<class ItemType>

class HeapPriorityQueue : public PriorityQueueInterface<ItemType>,

private ArrayMaxHeap<ItemType>

{

public:

HeapPriorityQueue();

bool isEmpty() const;

bool enqueue(const ItemType& newEntry);

bool dequeue();

// @pre The priority queue is not empty

ItemType peekFront() const throw(PrecondViolatexExcept);

}; // end HeapPriorityQueue

#endif

Heap Implementation of the ADT Priority
Queue
• A header file for the class HeapPriorityQueue

// Heap-based implementation of the ADT priority queue.

#include “HeapPriorityQueue.h”

template<class ItemType>

heapPriorityQueue<ItemType>::HeapPriorityQueue()

{

ArrayMaxHeap<ItemType>();

} // end constructor

template<class ItemType>

bool HeapPriorityQueue<ItemType>::isEmpty() const

{

return ArrayMaxHeap<ItemType>::isEmpty();

} // end isEmpty

template<class ItemType>

bool HeapPriorityQueue<ItemType>::enqueue(const ItemType& newEntry)

{

return ArrayMaxHeap<ItemType>::add(newEntry);

} // end add

Heap Implementation of the ADT Priority
Queue
• A header file for the class HeapPriorityQueue

template<class ItemType>

bool HeapPriorityQueue<ItemType>::dequeue()

{

return ArrayMaxHeap<ItemType>::remove();

} // end dequeue

template<class ItemType>

ItemType HeapPriorityQueue<ItemType>::peekFront() const throw(PrecondViolatedExcept)

{

try

{

return ArrayMaxHeap<ItemType>::peekTop();

}

catch (PrecondViolatedExcept e)

{

throw PrecondViolatedExcept(“Attempted peek into an empty priority queue.”);

} // end try/catch

} // end peekFront

Heap Implementation of the ADT Priority
Queue
• Heap versus a Binary Search Tree

• If you know the maximum number of items in the priority queue, heap is the better implementation

Heap Implementation of the ADT Priority
Queue
• Heap versus a Binary Search Tree

• If you know maximum number of items in the priority queue, heap is the better implementation

• Finite, distinct priority values

• Many items likely have same priority value

• Place in same order as encountered

Heap Sort

• Heap sort uses a heap to sort an array of items that are in no particular order.

Heap Sort

• Heap sort uses a heap to sort an array of items that are in no particular order.

• Transform the array into a heap.

• As members of the class ArrayMaxHeap, both heapCreate and heapRebuild have
access to the class’ data members, including the array items and its number of entries.

• To use heapRebuild in a heap sort, we must revise it so that it has the array and its size as
parameters.

for (int index = itemCount / 2 -1; index >=0; index--)

heapRebuild(index)

void heapRebuild(int startIndex, ItemType& anArray[], int n)

Heap Sort

• Heap sort uses a heap to sort an array of items that are in no particular order.

• Transform the array into a heap.

• As members of the class ArrayMaxHeap, both heapCreate and heapRebuild have
access to the class’ data members, including the array items and its number of entries.

• To use heapRebuild in a heap sort, we must revise it so that it has the array and its size as
parameters.

• After transforming the array into a heap, heap sort partitions the array into two regions –
the Heap region and the sorted region. Initially the heap region anArray[0..last] and
the Sorted region is in anArray[last+1..n-1]

• Initially the Heap region is all of anArray and the Sorted region is empty.

for (int index = itemCount / 2 -1; index >=0; index--)

heapRebuild(index)

void heapRebuild(int startIndex, ItemType& anArray[], int n)

Heap Sort

• Heap sort partitions an array into two regions

Heap Sort

• Each step of the algorithm moves an item I from the Heap region to the Sorted region.
During this process, the following statements are true

• The Sorted region contains the largest values in anArray, and they are in sorted order – that is,
anArray[n-1] is the largest item, anArray[n-2] is the second largest, and so on.

• The items in the heap region from a heap.

• So that the invariant holds, I must be the item that has the largest value in the Heap
region, and therefore I must be in the root of the heap.

Heap sort

• Heap sort key steps
// Sorts anArray[0..n-1]
heapsort(anArray: ArrayType, n: integer)
{

// Build initial heap
for (index = n / 2 – 1 down to 0)
{

// Assertion: The tree rooted at index is a semiheap
heapRebuild(index, anArray, n)
// Assertion: The tree rooted at index is a heap

}
// Assertion: anArray[0] is the largest item in heap anArray[0..n-1]

// Move the largest item in the Heap region – the root anArray[0] – to the beginning of the Sorted region
// by swapping and then adjusting the size of the regions
Swap anArray[0] and anArray[n-1]
heapSize = n-1 // Decrease the size of the Heap region, expand the Sorted region
while (heapSize > 1)
{

// Make the Heap region a heap again
heapRebuild(0, anArray, heapSize)
// Move the largest item in the Heap region – the root anArray[0] – to the beginning of the Sorted
// region by swapping items and then adjusting the size of the regions
Swap anArray[0] and anArray[heapSize-1]
heapSize-- // Decrease the size of the Heap region, expand the Sorted region

}
}

Heap Sort

• A trace of heap sort

Heap Sort

• A trace of heap sort (cont)

Heap Sort

• A trace of heap sort (cont)

Thank you

