CS302 - Data Structures
using C++

Topic: Balanced Search Trees

Kostas Alexis

Balanced Search Trees

« Height of binary search free
» Sensitive to order of additions and removals

e Various search trees can retain balance
« Despite additions and removals

Balanced Search Trees

The tallest and shortest binary search trees containing the same data

(a) Maximum height

(k) Minimum
height

AVL Trees

 An AVL (Adelson-Velskii and Landis) tree
* A balanced binary search tree

« Maintains its height close to the minimum
« Rotations restore the balance

AVL Trees

An unbalanced binary search tree

(a) Unbalanced (b) Balanced due to rotation (c¢) Balanced after addition

(30 (20) (20,
(200 ONO (10) (39
(19) (40

AVL Trees

Correcting an imbalance in an AVL tree due to an addition by using a single rotation to
the left

(a) The addition of 60 to an (b) A single left rotation
AVL tree destroys its balance restores the tree's balance

AVL Trees

[Continuved]

(c) The general case for a single left rotation
in an AVL tree whose height decreases

h

Before rotation

h

After rotation

AVL Trees

A single rotation to the left that does not affect the height of an AVL tree

(a) Unbalanced (b) After a single left rotation
that restores the tree's balance

(40)
(0) ()
OBOMC
O

AVL Trees

[Continuved]

(c) The general case for a single left rotation in
an AVL tree whose height is unchanged

Before rotation After rotation

AVL Trees

A double rotation that decreases the height of an AVL tree

(a) Before the rotation (b) After a left rotation (c) After the right rotation

AVL Trees

[Continuved]

(d) The double rotation in general

Before rotation After rotation

2-3 Trees

A 2-3 tree of height 3

2-3 Trees

Nodes in a 2-3 tree

(a) A two-node (b) A 3-node

S L

Data items < S Data items > S Data items < S Data items > L

Data items > S
and < L

2-3 Trees

A 2-3 free

120 150

2-3 Trees

A header file for a class of nodes for a 2-3 tree

1

2

3

4 #ifndef TRI_NODE_

5 #define TRI_NODE_

6

7 template<class ItemType>

8 class TriNode

9 {

10 private:

11 [temType smallltem;

12 [temType largeltem;

13 std: :shared ptr<TriNode<ItemType>> leftChildPtr;
14 std: :shared ptr<TriNode<ItemType>> midChildPtr;
15 std::shared_ptr<TriNode<ItemType>> rightChildPtr;
16

17 public:

18 TriNode();

R T T R I T N R N N O S N N N N Y T B N N O N Y i T San W VN N o SN W S N SURPRY o TN e W N T oV oot SV

2-3 Trees

[Continued]

[L At wrtect A VNG oS IS dF el T dl F A s A A EAA A Sl A A LA AT FOS G F iATT S ST ATIA LTS A AT
19

20 bool islLeaf() const;

21 bool isTwoNode() const;

22 bool isThreeNode() const;

23

24 ItemType getSmallltem() const;

25 ItemType getlargeltem() const;

26

27 void setSmallltem(const ItemType& anltem);

28 void setlLargeltem(const ItemType& anltem);

29 auto getlLeftChildPtr() const;

30 auto getMidChildPtr() const;

31 auto getRightChildPtr() const;

=

33 void setlLeftChildPtr(std: :shared ptr<TriNode<ItemType>> leftPtr);
34 void setMidChildPtr(std::shared_ptr<TriNode<ItemType>> midPtr);

35 void setRightChildPtr(std::shared ptr<TriNode<ItemType>> rightPtr);
36 };

37 #include “TriNode.cpp”
38 #endif

Traversing a 2-3 Tree

Performing the analogue of an inorder traversal on a binary tree:

inorder (23Tree: TwoThreeTree): void

I
L

if (23Tree's root node r is a leaf)
Visit the data item(s)
else if (r has two data items)

{
inorder (/eft subtree of 23Tree’s root)
Visit the first data item
inorder (middle subtree of 23Tree’s root)
Visit the second data item
inorder (right subtree of 23Tree’s root)
}
else // r has one data item
{
inorder (left subtree of 23Tree’s root)
Visit the data item
inorder (right subtree of 23Tree’s root)
}

Searching a 2-3 Tree

Retrieval operation for a 2-3 tree

findItem(23Tree: TwoThreelree, target: ItemType): ItemType

I
L

if (target is in 23Tree s root node r)

{ | .
treeltem = the data portion of r
return treeltem

}
else if (ris aleaf)
throw NotFoundException

else if (r has two data items)
I
L
g g g gt g5 F p B g g o id i I P p LB pL R GRG TIPS D st 270 o p BB b g5 g S Ao

Searching a 2-3 Tree

Retrieval operation for a 2-3 tree

e wer el A F AP T AT O R AT Tiaind [) Tt W et imed i [Tl A i OF S gl o g =

else if (r has two data items)

{
if (target <smaller data item inr)
return findItem(r's left subtree, target)
else if (target < larger data item inr)
return findItem(r’s middle subtree, target)
else
return findItem(r’s right subtree, target)
}
else
{
if (target < r’'s data item)
return findItem(r's left subtree, target)
else
return findItem(r’s right subtree, target)
}

Searching a 2-3 Tree

« Search of a 2-3 and shortest binary search tree approximately same
efficiency

* A binary search tree with n nodes cannot be shorter than
log,(n + 1)

« A 2-3 tree with n nodes cannot be taller than log,(n + 1)
« Node in a 2-3 tree has at most two data items

« Searching 2-3 tree is O(logn)

Searching a 2-3 Tree

A balanced binary search free & a 2-3 free

(a) A balanced binary search tree (b) A 2-3 tree

D
(9 G0

Searching a 2-3 Tree

The frees shown before after
adding the values 39 down o 32

(o__20)(_)

Adding Data to a 2-3 Tree

The steps for adding 38 to the tree in previous figure

(a) The Iocated node has no room b) The node sphts and 39 moves up (¢) The tree after the addition

(¢) The tree after the addition

Adding Data to a 2-3 Tree

After adding 37 to the tree in Figure

Adding Data to a 2-3 Tree

The steps for adding 36 to the tree in Figure (o
(a) The located node has no (b) After the node splits, (c) The node splits and
room, so 37 must move up its parent has no room for 37 37 moves up
50
A A

IO

Adding Data to a 2-3 Tree

The steps for adding 36 to the tree in Figure (o
(a) The located node has no (b) After the node splits, (c) The node splits and
room, so 37 must move up its parent has no room for 37 37 moves up

bubbles up

50

Adding Data to a 2-3 Tree

[Continuved]

(d) The tree after the addition

37 5[1)

)
AT

Adding Data to a 2-3 Tree o)

The tree after the adding 35, 34, and 33 fo the tree in Figure

CB? 50)

/
(30 35) (?D %)

S Dodb &b

Adding Data to a 2-3 Tree

Splitting a leaf in a 2-3 tfree in general and in a specific example

(a) The leaf is a left child

Adding Data to a 2-3 Tree

[Continued]

(b) The leaf is a right child

Adding Data to a 2-3 Tree

Splitting an internal node in a 2-3 tree in general and in a specific example

(a) The node is a left child

Adding Data to a 2-3 Tree

[Continuved]

(b) The node is a right child

Adding Data to a 2-3 Tree

Splitting the root of a 2-3 tree general and in a specific example

(b) A 2-3 tree

Removing Data from a 2-3 Tree @

The steps for removing 70 from the 2-3 tree in Figure - slide 21

Swap with inorder successor

Removing Data from a 2-3 Tree

[Continuved]

(b)

(8[] 90)

6 b

After the swap

(‘IO

Removing Data from a 2-3 Tree

[Continued]

(80 90)

Jé dob b >.

Remove value from leaf Merge nodes by deleting empty leaf and moving 80 down

Removing Data from a 2-3 Tree

[Continuved]

(f) The resulting tree

Removing Data from a 2-3 Tree

(60 8{]) o

Remove value from leaf Doesn’t work Redistribute

Removing Data from a 2-3 Tree

[Continuved]

(cl) The resulting tree

Removing Dafa from a 2-3 Tree

d) The resulting tree

The steps for removing 80 from the 2-3 tree in Figure =
() (20)
© © ©

After swap with inorder successor Remove value from leaf

Removing Data from a 2-3 Tree

[Continuved]

Merge by moving 90 down and removing empty leaf

Removing Data from a 2-3 Tree

[Continuved]

Merge: move 50 down, adopt empty leaf's child, delete empty node Delete empty root

Removing Data from a 2-3 Tree

Possible situations during the removal of a data item from a 2-3 free

(a) Redistributing values to fill an empty leaf

Redistribute °

Sibling Leaf

(b) Deleting an empty leaf and merging its sibling with its parent

Sibling Leaf

Removing Data from a 2-3 Tree

[Continuved]

(c) Redistributing values and children to fill an empty node

Removing Data from a 2-3 Tree

[Continuved]

(d) Deleting an empty internal node and merging others

Removing Data from a 2-3 Tree

[Continuved]

(e) Deleting an empty root

Height h <
> Height h - 1

2-3-4 Trees

A 2-3-4 tree with the same data items as the 2-3 tree in Figure - slide 22

2-3-4 Trees

A 4-node in a 2-3-4 tree

S M L

Data items < S / \ Data itemns > L
Data items > S and < M Data items > M and < L

2-3-4 Trees

« Searching and traversing
« Simple extensions of corresponding algorithms for a 2-3 tree

« Adding data
« Like addition algorithm for 2-3 free
 Splits node by moving one data item up to parent node

Adding Data to 2-3-4 Trees

Adding 20 to a one-node 2-3-4 tree

(a) The original tree (b) After splitting the tree (c) After adding 20

= db che

Adding Data to 2-3-4 Trees

(c) After adding 20

10 20 @

After adding 50 and 40 to the tree in Figure

40 50 60

(10 20)

Adding Data to 2-3-4 Trees

The steps for adding 70 to the tree in Figure

(a) After splitting the 4-node (b) After adding 70

5L Hbe=

Adding Data to 2-3-4 Trees

After adding 80 and 15 to the tree in Figure (b) After adding 70

N
/“f)\

(10 15 20) (60 70 sn)

Adding Data to 2-3-4 Trees

The steps for adding 90 to the tree in Figure

(a) After splitting the root’s right child (b} After adding 90 to the root's right child

3(} 50 70 (30 50 ?CJ)

G mo) \o C mo) }

Adding Data to 2-3-4 Trees

(b) After adding 90 to the root's right child

30 50 70

The steps for adding 100 to the tree in Figure

(a) After splitting the 4-node (b) After adding 100 to the rightmost leaf

10 15 20 80 90100

Adding Data to 2-3-4 Trees

Splitting a 4-node root when adding data to a 2-3-4 tfree

Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 2-node when adding data to a 2-3-4
tree

(a) The 4-node is a left child

Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 3-node when adding data to a 2-3-4 free

(a) The 4-node is a left child

]} gel)

1] M

Adding Data to 2-3-4 Trees

[Continuved]

Adding Data to 2-3-4 Trees

[Continued]

(c) The 4-node is a right child

p M)

@ (p o
e

cd e f

Removing Data from a 2-3-4 Tree

« Has same beginning as removal algorithm for a 2-3 tree
« Transform each 2-node into a 3-node or a 4-node

* Inserfion and removal algorithms for 2-3-4 tree require fewer steps
than for 2-3 tree

Thank you

