
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Red-Black Trees

CS302 - Data Structures
using C++

Kostas Alexis

Topic: 2-3-4 Trees

2-3-4 Trees
• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children

even better?

2-3-4 Trees
• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children

even better?
• To some extent, yes.

2-3-4 Trees - Definition
• T is a 2-3-4 tree of height h if one of the following is true:

• T is empty, in which case h is 0.
• T is of the form:

• T is of the form:

• T is of the form:

r

TL TR

r

TL TRTM

r

TL TRTML TMR

where r is a node that contains one data item and TL and TR are
both 2-3-4 trees of height h-1. In this case: r must be greater
than each item in TL and smaller than each item in TR.

where r is a node that contains two data items and TL, TM and TR
are 2-3-4 trees, each of height h-1. In this case: the smaller item
in r must be greater than each item in TL and smaller than each
item in TM. The larger item in r must be greater than each item in
TM and smaller than each item in TR.

where r is a node that contains three data items and TL, TML, TMR
and TR are 2-3-4 trees of height h-1. In this case: smallest item in r
must be greater than each item in TL and smaller than each
item in TML. The middle item in r must be greater than each in TML
and smaller than each item in TMR. The largest item in r must be
greater than each item in TMR and smaller than TR.

2-3-4 Trees - Definition
• Rules for placing data items in the nodes of a 2-3-4 tree

• The previous definition of a 2-3-4 tree implies the following rules for data placement:
• A 2-node, which has two children, must contain a single data item that satisfies the

relationships as in a 2-3 tree.
• A 3-node, which has three children, must contain two data items that satisfy the relationships

as in a 2-3 tree.
• A 4-node, which has four children, must contain three data items S, M, and L that satisfy the

following relationships: S is greater than the left child’s item(s) and less than the middle-left
child’s item(s); M is greater than the middle-left child’s item(s) and less than the middle-right
child’s item(s); L is greater than the middle-right child’s item(s) and less than the right child’s
item(s).

• A leaf may contain either one, two, or three data items.

2-3-4 Trees
• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children

even better?
• More efficient addition and removal operations than a 2-3 tree
• Has greater storage requirements due to the additional data members in its 4-nodes

2-3-4 Trees
• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children

even better?
• More efficient addition and removal operations than a 2-3 tree
• Has greater storage requirements due to the additional data members in its 4-nodes
• However, a 2-3-4 tree can be transformed into a special binary tree that reduces the storage

requirements

2-3-4 Trees
A 2-3-4 tree with the same data items as the 2-3 tree in Figure

2-3-4 Trees
A 4-node in a 2-3-4 tree

2-3-4 Trees

• Searching and traversing
• Simple extensions of corresponding algorithms for a 2-3 tree

• Adding data
• Like addition algorithm for 2-3 tree
• Splits node by moving one data item up to parent node [bubble

up]

Adding Data to 2-3-4 Trees
Adding 20 to a one-node 2-3-4 tree

Adding Data to 2-3-4 Trees
After adding 50 and 40 to the tree in Figure

Adding Data to 2-3-4 Trees
The steps for adding 70 to the tree in Figure

Adding Data to 2-3-4 Trees
After adding 80 and 15 to the tree in Figure

Adding Data to 2-3-4 Trees
The steps for adding 90 to the tree in Figure

Adding Data to 2-3-4 Trees
The steps for adding 100 to the tree in Figure

Adding Data to 2-3-4 Trees
Splitting a 4-node root when adding data to a 2-3-4 tree

• The practice is to split each 4-node as soon as it is encountered during the search from
the root to the leaf that will accommodate the additional data item.

• As a result, each 4-node either will:
• Be the root,
• Have a 2-node parent, or
• Have a 3-node parent

Adding Data to 2-3-4 Trees
Splitting a 4-node root when adding data to a 2-3-4 tree

Adding Data to 2-3-4 Trees
Splitting a 4-node whose parent is a 2-node when adding data to a 2-3-4 tree

Adding Data to 2-3-4 Trees
Splitting a 4-node whose parent is a 3-node when adding data to a 2-3-4 tree

Adding Data to 2-3-4 Trees
[Continued]

Adding Data to 2-3-4 Trees
[Continued]

Removing Data from a 2-3-4 Tree

• Has same beginning as removal algorithm for a 2-3 tree
• Transform each 2-node into a 3-node or a 4-node
• Insertion and removal algorithms for 2-3-4 tree require fewer steps

than for 2-3 tree

CS302 - Data Structures
using C++

Kostas Alexis

Topic: Red-Black Trees

Red-Black Trees

• A 2-3-4 tree is efficient with respect to addition and removal
operations but requires more storage than binary search tree

Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but
requires more storage than binary search tree
• Red-black tree has the advantages of a 2-3-4 tree but requires less

storage

Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but
requires more storage than binary search tree
• Red-black tree has the advantages of a 2-3-4 tree but requires less

storage
• In a red-black tree,

Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but
requires more storage than binary search tree
• Red-black tree has the advantages of a 2-3-4 tree but requires less

storage
• In a red-black tree,

• Red pointers link 2-nodes that now contain values that were in a
3-node or a 4-node

Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but
requires more storage than binary search tree
• Red-black tree has the advantages of a 2-3-4 tree but requires less

storage
• In a red-black tree,

• Red pointers link 2-nodes that now contain values that were in a
3-node or a 4-node
• A red pointer references a red node

Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but
requires more storage than binary search tree
• Red-black tree has the advantages of a 2-3-4 tree but requires less

storage
• In a red-black tree,

• Red pointers link 2-nodes that now contain values that were in a
3-node or a 4-node
• A red pointer references a red node
• A black pointer references a black node

Red-Black Trees

• Represent 2-3-4 tree as a BST
• Use “internal” red edges for 3- and 4-nodes

Red-Black Trees
Red-black representations of a 4-node and a 3-node

Red-Black Trees
Red-black representations of a 4-node and a 3-node

Representation of a 3-
node is non-unique

Red-Black Trees
A red-black tree that represents the 2-3-4 tree in Figure

Red-Black Trees
Properties of a Red-Black Tree:

• The root is black

• Every red node has a black parent

• Any children of a red node are black; that is, a red node cannot have red children

• Every path from the root to a leaf contains the same number of black nodes

Red-Black Trees

8

5 15

12 19

9 13 23

nil nil

nil

nil nil nil nil nil nil

Red-Black Trees

8

5 15

12 19

9 13 23

nil nil

nil

nil nil nil nil nil nil

The root and all leaves (nil) are black

Red-Black Trees

8

5 15

12 19

9 13 23

nil nil

nil

nil nil nil nil nil nil

All red nodes have black children

Red-Black Trees

8

5 15

12 19

9 13 23

nil nil

nil

nil nil nil nil nil nil

All paths from a node to its leaf(nil)
descendants contain the same
number of black nodes

Red-Black Trees
We derive the class of Red-Black nodes from the class BinaryNode

enum Color {RED, BLACK};

template<class ItemType>
class RedBlackNode : public BinaryNode<ItemType>
{
private:

Color leftColor;
Color rightColor;

public:
// Get and set methods for leftColor and rightColor
// …

} // end RedBlackNode

Red-Black Trees
Further properties

• Nodes require at a minimum one storage bit to keep track of color

• The longest path (root to furthest leaf) is no more than twice the length of the shortest
path (root to nearest leaf)
• Shortest path: all black nodes
• Longest path: alternating between red and black nodes

Searching and Traversing a Red-Black
Tree
• A red-black tree is a binary search tree
• Thus, search and traversal

• Use algorithms for binary search tree
• Simply ignore color of pointers
• Code may not change at all!

Adding to and Removing from a Red-
Black Tree
• Red-black tree represents a 2-3-4 tree

• Simply adjust 2-3-4 addition algorithms
• Accommodate red-black representation

• Splitting equivalent of a 4-node requires simple color changes
• Pointer changes called rotations result in a shorter tree

Adding to and Removing from a Red-
Black Tree
• When adding a new node, the Red-Black Tree properties must be

maintained.

Adding to and Removing from a Red-
Black Tree
Case 1: Splitting a red-black representation of a 4-node root

Adding to and Removing from a Red-
Black Tree
Case 2: Splitting a red-black representation of a 4-node whose parent is a 2-node

Adding to and Removing from a Red-
Black Tree
[Continued]

Adding to and Removing from a Red-
Black Tree
Case 3: Splitting a red-black representation of a 4-node whose parent is a 3-node

Adding to and Removing from a Red-
Black Tree
[Continued]

Adding to and Removing from a Red-
Black Tree
[Continued]

Red-Black Trees
Properties re-written

• Every node is either red or black

• The root is black

• Every leaf (NIL) is black

• If a node is red, then both its children are black
• No two consecutive red nodes on a simple path from the root to a leaf

• For each node, all paths from that node to a leaf contain the same number of black
nodes

Red-Black Trees
An example

• For convenience, we add NIL nodes and refer to them as the leaves of the tree
(Color[NIL]=Black)

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

Red-Black Trees
• Definitions

• Height of a node = the number of edges in the longest path to a leaf

• Black-height bh(x) of a node x = the number of black nodes (including NIL on the path
from x to a leaf, not counting x)

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

Red-Black Trees
• Addition (Insertion)

• What color to make the new node?
• Red?

• Let’s insert 35
• Property 4 is violated: if a node is red, then both children are black

• Black?
• Let’s insert 14

• Property 5 is violated: all paths from a node to its leaves contain the same
number of black nodes

26

17 41

30 47

38 50

Red-Black Trees
• Deletion of item

• What color was the node that was removed? Red?
• Every node is either red or black (OK)
• The root is black (OK)
• Every leaf (NIL) is black (OK)
• If a node is red, then both its children are black (OK)

• For each node, all paths from the node to descendant leaves contain the same
number of black nodes (OK)

26

17 41

30 47

38 50

Red-Black Trees
• Deletion of item

• What color was the node that was removed? Black?
• Every node is either red or black (OK)
• The root is black (NOT OK! If removing the root and the child

that replaces it is red)
• Every leaf (NIL) is black (OK)
• If a node is red, then both its children are black (Not OK! Could create two red

nodes in a row)

• For each node, all paths from the node to descendant leaves contain the same
number of black nodes (Not OK! Could change the

black heights of some nodes)

26

17 41

30 47

38 50

Red-Black Trees
• Rotations

• Operations for re-structuring the tree after insert and delete operations
• Together with some node re-coloring they help restore the red-black tree

property
• Change some of the pointer structure
• Preserve the binary search-tree property

• Two types of rotations
• Left & right rotations

Red-Black Trees
• Left Rotations

• Assumptions for a left rotation on a node x
• The right child y of x is not NIL

• Idea
• Pivots around the link from x to y
• Makes y the new root of the subtree
• x becomes y’s left child
• y’s left child becomes x’s right child

Red-Black Trees
• Left Rotations: Example

Red-Black Trees
• Left-Rotate(T,x)

1. y ← right[x] // Set y

2. right[x] ← left[y] // y’s left subtree becomes x’s right subtree

3. if left[y]  NIL

4. then p[left[y]] ← x // Set the parent relation from left[y] to x

5. p[y] ← p[x] // The parent of x becomes the parent of y

6. if p[x] = NIL

7. then root[T] ← y

8. else if x = left[p[x]]

9. then left[p[x]] ← y

10. else right[p[x]] ← y

11. left[y] ← x // Put x on y’s left

12. p[x] ← y // y becomes x’s parent

Red-Black Trees
• Right Rotations

• Assumptions for a right rotation on a node x
• The right child x of y is not NIL

• Idea
• Pivots around the link from y to x
• Makes x the new root of the subtree
• y becomes x’s right child
• x’s right child becomes y’s left child

Red-Black Trees
• Add (Insert) Item

• Goal
• Insert a new node z into a red-black tree

• Idea
• Insert node z into the tree as for an ordinary binary search tree
• Color the node red
• Restore the red-black tree properties

Red-Black Trees
• RB-Insert(T,z)

1. y ← NIL

2. x ← root[T]

3. while x  NIL

4. do y ← x

5. if key[z] < key[x]

6. then x ← left[x]

7. else x ← right[x]

8. p[z] ← y

• Initialize nodes x and y
• Throughout the algorithm y points to the parent of x

• Go down the tree until reaching a leaf
• At that point y is the parent of the node to be inserted

• Sets the parent of z to be y

26

17 41

30 47

38 50

Red-Black Trees
• RB-Insert(T,z)

9.if y = NIL

10. then root[T] ← z

11. else if key[z] < key[y]

12. then left[y] ← z

13. else right[y] ← z

14. left[z] ← NIL

15. right[z] ← NIL

16. color[z] ← RED

17. RB-INSERT-FIXUP(T, z)

26

17 41

30 47

38 50

The tree was empty: set the new node to be the root

Otherwise, set z to be the left or right child of y,
depending on whether the inserted node is smaller or
larger than y’s key

Set the fields of the newly added node

Fix any inconsistencies that could have been
introduced by adding this new red node

Red-Black Trees
• Red-Black Tree Properties affected by Insert

1. Every node is either red or black (OK)
2. The root is black (Not OK! – If z is the root)
3. Every leaf (NIL) is black (OK)
4. If a node is red then both its children are black (Not OK! – if p(z) is red, z and p(z) are both red)
5. For each node, all paths from node to (OK)

descendant leaves contain the same number
of black nodes

26

17 41

4738

50

Red-Black Trees
• RB-Insert-Fixup

• Case 1
• z’s “uncle” (y) is red
• z either left or right child

• Idea
• p[p[z]] (z’s grandparent) must be black

• color p[z]  black

• color y  black

• color p[p[z]]  red

• z = p[p[z]]

• Push the “red” violation up the tree

Red-Black Trees
• Idea

• color p[z]  black
• color p[p[z]]  red
• RIGHT-ROTATE(T, p[p[z]])
• No longer have 2 reds in a row
• p[z] is now black

Case 2

• RB-Insert-Fixup
• Case 2

• z’s “uncle” (y) is black
• Z is a left child

Red-Black Trees
• RB-Insert-Fixup

• Case 3
• z’s “uncle” (y) is black
• z is a right child

• Idea
• z p[z]
• LEFT-ROTATE(T, z)

 now z is a left child, and both z and
p[z] are red  case 2

Case 3 Case 2

Red-Black Trees
• Insertion Example (insert 4) 11

2 14

1 157

85

4

y

11

2 14

1 157

85

4

z

Case 1

y

z and p[z] are both red
z’s uncle y is redz

z and p[z] are both red
z’s uncle y is black
z is a right child11

2

14

1

15

7

8

5

4

z

y Case 2

z and p[z] are red
z’s uncle y is black
z is a left child

112

141

15

7

85

4

z

Red-Black Trees
• RB-Insert-Fixup(T,z)

1. while color[p[z]] = RED

2. if p[z] = left[p[p[z]]]

3. then y ← right[p[p[z]]]

4. if color[y] = RED

5. then Case1

6. else if z = right[p[z]]

7. then Case3

8. Case2

9. else (same as then clause with “right” and “left” exchanged for lines 3-4)

10. color[root[T]] ← BLACK

26

17 41

30 47

38 50

The while loop repeats only when
case1 is executed: O(logN) times

Set the value of x’s “uncle”

We just inserted the root, or
The red violation reached the root

Red-Black Trees
Time Complexity

• Search: 𝑂(𝑙𝑜𝑔𝑛)

• Insert: 𝑂(𝑙𝑜𝑔𝑛)

• Remove: 𝑂(𝑙𝑜𝑔𝑛)

Red-Black Trees
Time Complexity

• Search: 𝑂(𝑙𝑜𝑔𝑛)

• Insert: 𝑂(𝑙𝑜𝑔𝑛)

• Remove: 𝑂(𝑙𝑜𝑔𝑛)

Storage Complexity

• 𝑂(𝑛)

