CS302 - Data Structures
using C++

Topic: Graphs — Spanning Trees & Minimum Spanning Tree

Kostas Alexis



Spanning Trees

* A freeis an undirected connected graph without cycles



Spanning Trees

« A freeis an undirected connected graph without cycles

« Spanning Tree: A spanning tree is a subset of Graph G, which has all the vertices
covered with minimum possible number of edges. Hence, a spanning tree does not
have cycles and it cannot be disconnected.. By this definition, we can draw a
conclusion that every connected and undirected Graph G has at least one spanning
tree.



Spanning Trees

* A freeis an undirected connected graph without cycles

« Spanning Tree: A spanning free is a subset of Graph G, which has all the vertfices
covered with minimum possible number of edges. Hence, a spanning tree does not
have cycles and it cannot be disconnected.. By this definition, we can draw a

conclusion that every connected and undirected Graph G has at least one spanning
tree.

» Detecting a cycle in an undirected graph
« Connected undirected graph with n vertices must have at least n-1 edges
« If it has exactly n-1 edges, it cannot contain a cycle
- With more than n-1 edges, must contain at least one cycle



Spanning Trees




Spanning Trees

« Connected graphs that each have four vertices and three edges




Spanning Trees

* DFS-based Spanning Tree Algorithm

// Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using depth-first search. Recursive version

dfsTree(v: Vertex)

{
Mark v as visited
for (each unvisited vertex u adjacent to v)
{
Mark the edge from u to v
dfsTree(u)
}
}

3
M
AUTONOMOUS
"ﬁ ROBOTE
LAR



Spanning Trees

« BFS-based Spanning Tree Algorithm

// Forms a spanning tree for a connected undirected graph beginning at vertex v by using depth-first search. Recursive
version

bfsTree(v: Vertex)

{

q = a new empty queue

d.enqueue(Vv)
Mark v as visited
while (!q.isEmpty())

{
g.dequeue(w)
for (each unvisited vertex u adjacent to w)
{
Mark us as visited
Mark edge between w and u
g.enqueue(u)
}
}



Spanning Trees

« Connected graphs that each have four vertices and three edges

The DFS spanning tree algorithm visits vertices in this
order: a, b, ¢, d, g, e, f, h, i. Numbers indicate the order
in which the algorithm marks edges.



Spanning Trees

* The BFS Spanning Tree rooted at vertex a for the example directed graph

The BFS spanning tree algorithm visits vertices in this
order: a, b, f, i, ¢, e, g, d, h. Numbers indicate the order
Root in which the algorithm marks edges.




Minimum Spanning Trees

« A Weighted, Connected, Undirected graph




Minimum Spanning Trees

* Minimum Spanning Tree: A minimum spanning tree (MST) or minimum weight spanning
tree is a subset of the edges of a connected, edge-weighted (un)directed graph that
connects all the vertices together, without any cycles and with the minimum possible

total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as
possible.




Minimum Spanning Trees

* Find Minimum Spanning Tree through “Prim’s Algorithm”™

// Forms a minimum spanning tree for a weighted, connected, undirected graph whose weights are >=0,
// beginning at vertex r
primsAlgorithm(r: Vertex)

Mark vertex r as visited and include it in the minimum spanning tree
while (there are unvisited vertices)

{
Find the least-cost edge (v,u) from a visited vertex v to some unvisited vertex u
Mark u as visited
Add the vertex u and the edge (v,u) to the minimum spanning tree

}



Minimum Spanning Trees o

« A frace of primsAlgorithm for the graph shown on the right:

@0 __6#_@
2,7 \ 2 \
’ \\ o \\
\

v

() Mark f, include edge (a, f) (d) Mark g, include edge (f, g)

L]
"'"@ (}"'-—_ *AUTONOMOUS
B . A R T N P N PR PRV S NN S s Y S FRECT



Minimum Spanning Trees o

« A frace of primsAlgorithm for the graph shown on the right:

N VW o T ot ety

6

o

Root

(e) Mark d, include edge (g, d)

(f) Mark h, include edge (d, h)

®' T N T it Y T Y u)f-",r‘ﬁ'-.!‘- f-Y. NP A Y Ny YR

§

"
AUTGHOMOUS
ROBOTS
LAR



Root

Minimum Spanning Trees o

« A frace of primsAlgorithm for the graph shown on the right:

gt A e el A ’“é)”lﬁﬂé?k’dﬂh’ilﬁd’é"e’oﬁé/@, m.ff/’"-ra‘ Lol e s ,,/Lﬁ"'ma/rfkﬂﬁ:-rﬂ-éru..aé!éa@éfafﬁj‘ AL AT AT

OO,

-

(h) Mark e, include edge (c, e)

(i) Mark b, include edge (a, b)

§

"
AUTGHOMOUS
ROBOTS
LAR



Thank you



