
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Graphs – Spanning Trees & Minimum Spanning Tree



Spanning Trees
• A tree is an undirected connected graph without cycles



Spanning Trees
• A tree is an undirected connected graph without cycles

• Spanning Tree: A spanning tree is a subset of Graph G, which has all the vertices
covered with minimum possible number of edges. Hence, a spanning tree does not
have cycles and it cannot be disconnected.. By this definition, we can draw a
conclusion that every connected and undirected Graph G has at least one spanning
tree.



Spanning Trees
• A tree is an undirected connected graph without cycles

• Spanning Tree: A spanning tree is a subset of Graph G, which has all the vertices 
covered with minimum possible number of edges. Hence, a spanning tree does not 
have cycles and it cannot be disconnected.. By this definition, we can draw a 
conclusion that every connected and undirected Graph G has at least one spanning 
tree.

• Detecting a cycle in an undirected graph

• Connected undirected graph with n vertices must have at least n-1 edges

• If it has exactly n-1 edges, it cannot contain a cycle

• With more than n-1 edges, must contain at least one cycle



Spanning Trees
• A spanning tree for the previous connected graph example 



Spanning Trees
• Connected graphs that each have four vertices and three edges



Spanning Trees
• DFS-based Spanning Tree Algorithm

// Forms a spanning tree for a connected undirected graph

// beginning at vertex v by using depth-first search. Recursive version

dfsTree(v: Vertex)

{

Mark v as visited

for (each unvisited vertex u adjacent to v)

{

Mark the edge from u to v

dfsTree(u)

}

}



Spanning Trees
• BFS-based Spanning Tree Algorithm

// Forms a spanning tree for a connected undirected graph beginning at vertex v by using depth-first search. Recursive 
version

bfsTree(v: Vertex)

{

q = a new empty queue

// Add v to queue and mark it

q.enqueue(v)

Mark v as visited

while (!q.isEmpty())

{

q.dequeue(w)

// Loop invariant: there is a path from w to every vertex in the queue q

for (each unvisited vertex u adjacent to w)

{

Mark us as visited

Mark edge between w and u

q.enqueue(u)

}

}

}



Spanning Trees
• Connected graphs that each have four vertices and three edges



Spanning Trees
• The BFS Spanning Tree rooted at vertex a for the example directed graph



Minimum Spanning Trees
• A Weighted, Connected, Undirected graph



Minimum Spanning Trees
• Minimum Spanning Tree: A minimum spanning tree (MST) or minimum weight spanning 

tree is a subset of the edges of a connected, edge-weighted (un)directed graph that 
connects all the vertices together, without any cycles and with the minimum possible 
total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as 
possible.



Minimum Spanning Trees
• Find Minimum Spanning Tree through “Prim’s Algorithm”

// Forms a minimum spanning tree for a weighted, connected, undirected graph whose weights are >=0, 

// beginning at vertex r

primsAlgorithm(r: Vertex)

{

Mark vertex r as visited and include it in the minimum spanning tree

while (there are unvisited vertices)

{

Find the least-cost edge (v,u) from a visited vertex v to some unvisited vertex u

Mark u as visited

Add the vertex u and the edge (v,u) to the minimum spanning tree

}

}



Minimum Spanning Trees
• A trace of primsAlgorithm for the graph shown on the right: 



Minimum Spanning Trees
• A trace of primsAlgorithm for the graph shown on the right: 



Minimum Spanning Trees
• A trace of primsAlgorithm for the graph shown on the right: 



Thank you


