
CS302 - Data Structures
using C++

Kostas Alexis

Topic: The Boost Graph Library



Boost Graph Library (BGL)

• The BGL graph interface and graph components are generic, in the same sense as the 
Standard Template Library (STL).



How to Build the BGL

• DON'T! The Boost Graph Library is a header-only library and does not need to be built to 
be used. The only exceptions are the GraphViz input parser and the GraphML parser.



Genericity in STL

• There are three ways in which the STL is generic.

• Algorithm/Data-Structure Interoperability

• First, each algorithm is written in a data-structure neutral way, allowing a single template function to
operate on many different classes of containers. The concept of an iterator is the key ingredient in this
decoupling of algorithms and data-structures. The impact of this technique is a reduction in the STL's
code size from O(M*N) to O(M+N), where M is the number of algorithms and N is the number of
containers.



Genericity in STL

• There are three ways in which the STL is generic.

• Extension through Function Objects

• Its algorithms and containers are extensible. The user can adapt and customize the STL through the use
of function objects.



Genericity in STL

• There are three ways in which the STL is generic.

• Element Type Parameterization

• The third way that STL is generic is that its containers are parameterized on the element type. Though
hugely important, this is perhaps the least “interesting” way in which STL is generic. Generic
programming is often summarized by a brief description of parameterized lists such as std::list<T>.



Genericity in the BGL

• There are three ways in which the BGL is generic.

• Algorithm/Data-Structure Interoperability

• First, the graph algorithms of the BGL are written to an interface that abstracts away the details of the
particular graph data-structure. Like the STL, the BGL uses iterators to define the interface for data-
structure traversal. There are three distinct graph traversal patterns: traversal of all vertices in the graph,
through all of the edges, and along the adjacency structure of the graph.

• This generic interface allows template functions such as breadth_first_search() to work on a large variety
of graph data-structures, from graphs implemented with pointer-linked nodes to graphs encoded in
arrays. This flexibility is especially important in the domain of graphs.

• In contrast, custom-made (or even legacy) graph structures can be used as-is with the generic graph
algorithms of the BGL, using external adaptation.



Genericity in the BGL

• There are three ways in which the BGL is generic.

• Extension through Visitors

• The graph algorithms of the BGL are extensible. The BGL introduces the notion of a visitor, which is just a
function object with multiple methods. In graph algorithms, there are often several key “event points” at
which it is useful to insert user-defined operations. The visitor object has a different method that is
invoked at each event point. The particular event points and corresponding visitor methods depend on
the particular algorithm. They often include methods like start_vertex(), discover_vertex(),
examine_edge(), tree_edge(), and finish_vertex().



Genericity in the BGL

• There are three ways in which the BGL is generic.

• Vertex and Edge Property Multi-Parametrization

• The third way that the BGL is generic is analogous to the parameterization of the element-type in STL
containers. We need to associate values (called “properties”) with both the vertices and the edges of
the graph. In addition, it will often be necessary to associate multiple properties with each vertex and
edge; this is what we mean by multi-parameterization.

• The STL std::list<T> class has a parameter T for its element type. Similarly, BGL graph classes have
template parameters for vertex and edge “properties”. A property specifies the parameterized type of
the property and also assigns an identifying tag to the property. This tag is used to distinguish between
the multiple properties which an edge or vertex may have. A property value that is attached to a
particular vertex or edge can be obtained via a property map. There is a separate property map for
each property.



Algorithms in BGL

• The BGL algorithms consist of a core set of algorithm patterns (implemented as generic
algorithms) and a larger set of graph algorithms.

• The core algorithm patterns are

• Breadth First Search

• Depth First Search

• Uniform Cost Search



Algorithms in BGL

• By themselves, the algorithm patterns do not compute any meaningful quantities over
graphs; they are merely building blocks for constructing graph algorithms. The graph
algorithms in the BGL currently include

• Dijkstra’s Shortest Paths

• Bellman-Ford Shortest Paths

• Johnson’s All-Pairs Shortest Paths

• Kruskal’s Minimum Spanning Tree

• Prim’s Minimum Spanning Tree

• Connected Component

• Strongly Connected Components

• Dynamic Connected Components

• Topological Sort

• Reverse Cuthill Mckee Ordering

• Smallest Last Vertex Ordering

• Sequential Vertex Coloring



Data Structures in BGL

• The BGL currently provides two graph classes and an edge list adaptor:

• adjacency_list

• adjacency_matrix

• edge_list



Analogy between STL and BGL



Graph Abstraction

• The graph abstraction consists of a set of vertices (or nodes), and a set of edges (or
arcs) that connect the vertices.

• The Figure depicts a directed graph with five vertices (labeled 0 through 4) and 11
edges. The edges leaving a vertex are called the out-edges of the vertex. The edges
{(0,1),(0,2),(0,3),(0,4)} are all out-edges of vertex 0. The edges entering a vertex are
called the in-edges of the vertex. The edges {(0,4),(2,4),(3,4)} are all in-edges of vertex
4.



Constructing a Graph
#include <iostream> // for std::cout
#include <utility> // for std::pair
#include <algorithm> // for std::for_each
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>

using namespace boost;
int main(int,char*[])
{

// create a typedef for the Graph type
typedef adjacency_list<vecS, vecS, bidirectionalS> Graph;

// Make convenient labels for the vertices
enum { A, B, C, D, E, N };
const int num_vertices = N;
const char* name = "ABCDE";

// writing out the edges in the graph
typedef std::pair<int, int> Edge;
Edge edge_array[] = 
{ Edge(A,B), Edge(A,D), Edge(C,A), Edge(D,C),
Edge(C,E), Edge(B,D), Edge(D,E) };
const int num_edges = sizeof(edge_array)/sizeof(edge_array[0]);

// declare a graph object
Graph g(num_vertices);

// add the edges to the graph object
for (int i = 0; i < num_edges; ++i)

add_edge(edge_array[i].first, edge_array[i].second, g);
...
return 0;

}

• The adjacency_list class provides a

generalized version of the classic "adjacency

list" data structure.

• The adjacency_list is a template class with six

template parameters, though here we only fill

in the first three parameters and use the

defaults for the remaining three.

• The first two template arguments (vecS, vecS)

determine the data structure used to

represent the out-edges for each vertex in the

graph and the data structure used to

represent the graph's vertex set

• The third argument, bidirectionalS, selects a

directed graph that provides access to both

out and in-edges.

• The other options for the third argument are

directedS which selects a directed graph with

only out-edges, and undirectedS which selects

an undirected graph.



Constructing a Graph
#include <iostream> // for std::cout
#include <utility> // for std::pair
#include <algorithm> // for std::for_each
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>

using namespace boost;
int main(int,char*[])
{

// create a typedef for the Graph type
typedef adjacency_list<vecS, vecS, bidirectionalS> Graph;

// Make convenient labels for the vertices
enum { A, B, C, D, E, N };
const int num_vertices = N;
const char* name = "ABCDE";

// writing out the edges in the graph
typedef std::pair<int, int> Edge;
Edge edge_array[] = 
{ Edge(A,B), Edge(A,D), Edge(C,A), Edge(D,C),
Edge(C,E), Edge(B,D), Edge(D,E) };
const int num_edges = sizeof(edge_array)/sizeof(edge_array[0]);

// declare a graph object
Graph g(num_vertices);

// add the edges to the graph object
for (int i = 0; i < num_edges; ++i)

add_edge(edge_array[i].first, edge_array[i].second, g);
...
return 0;

}

• Instead of calling the add_edge() function for

each edge, we could use the edge iterator

constructor of the graph. This is typically more

efficient than using add_edge(). Pointers to

the edge_array can be viewed as iterators, so

we can call the iterator constructor by passing

pointers to the beginning and end of the

array.

• Instead of creating a graph with a certain

number of vertices to begin with, it is also

possible to add and remove vertices with the

add_vertex() and remove_vertex() functions,

also of the MutableGraph interface.



Accessing the Vertex Set
int main(int,char*[])

{

// ...

// get the property map for vertex indices

typedef property_map<Graph, vertex_index_t>::type IndexMap;

IndexMap index = get(vertex_index, g);

std::cout << "vertices(g) = ";

typedef graph_traits<Graph>::vertex_iterator vertex_iter;

std::pair<vertex_iter, vertex_iter> vp;

for (vp = vertices(g); vp.first != vp.second; ++vp.first)

std::cout << index[*vp.first] << " ";

std::cout << std::endl;

// ...

return 0;

}

• Now that we have created a graph, we can

use the graph interface to access the graph

data in different ways.

• First we can access all of the vertices in the

graph using the vertices() function of the

VertexListGraph interface.

• This function returns a std::pair of vertex

iterators (the first iterator points to the

"beginning" of the vertices and the second

iterator points "past the end").

• Dereferencing a vertex iterator gives a vertex

object.

• The type of the vertex iterator is given by the

graph_traits class.

• Note that different graph classes can have

different associated vertex iterator types,

which is why we need the graph_traits class.

Given some graph type, the graph_traits class

will provide access to the vertex_iterator type.

The output is: vertices(g) = 0 1 2 3 4



Accessing the Edge Set
int main(int,char*[])

{

// ...

std::cout << "edges(g) = ";

graph_traits<Graph>::edge_iterator ei, ei_end;

for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)

std::cout << "(" << index[source(*ei, g)] 

<< "," << index[target(*ei, g)] << ") ";

std::cout << std::endl;

// ...

return 0;

}

• The set of edges for a graph can be accessed

with the edges() function of the EdgeListGraph

interface.

• Similar to the vertices() function, this returns a

pair of iterators, but in this case the iterators

are edge iterators.

• Dereferencing an edge iterator gives an edge

object.

• The source() and target() functions return the

two vertices that are connected by the edge.

• Instead of explicitly creating a std::pair for the

iterators, this time we will use the tie() helper

function.

• This handy function can be used to assign the

parts of a std::pair into two separate variables,

in this case ei and ei_end. This is usually more

convenient than creating a std::pair and is our

method of choice for the BGL.

The output is: edges(g) = (0,1) (0,3) (2,0) (3,2) (2,4) (1,3) (3,4)



The Adjacency Structure
int main(int,char*[])

{

//...

std::for_each(vertices(g).first, vertices(g).second,

exercise_vertex<Graph>(g));

return 0;

}

• In the next few examples we will explore the

adjacency structure of the graph from the

point of view of a particular vertex.

• We will look at the vertices' in-edges, out-

edges, and its adjacent vertices.

• We will encapsulate this in an "exercise vertex"

function, and apply it to each vertex in the

graph.

• To demonstrate the STL-interoperability of BGL,

we will use the STL for_each() function to

iterate through the vertices and apply the

function.



The Adjacency Structure
template <class Graph> struct exercise_vertex {

exercise_vertex(Graph& g_) : g(g_) {}

//...

Graph& g;

};

• We use a functor for exercise_vertex instead of

just a function because the graph object will

be needed when we access information

about each vertex;

• Using a functor gives us a place to keep a

reference to the graph object during the

execution of the std::for_each().

• Also we template the functor on the graph

type so that it is reusable with different graph

classes. Here is the start of the exercise_vertex

functor:



Vertex Descriptors
template <class Graph> struct exercise_vertex {

//...

typedef typename graph_traits<Graph>

::vertex_descriptor Vertex;

void operator()(const Vertex& v) const

{

//...

}

//...

};

• The first thing we need to know in order to

write the operator() method of the functor is

the type for the vertex objects of the graph.

• The vertex type will be the parameter to the

operator() method. To be precise, we do not

deal with actual vertex objects, but rather with

vertex descriptors.

• Many graph representations (such as

adjacency lists) do not store actual vertex

objects, while others do (e.g., pointer-linked

graphs).

• The vertex descriptor is something provided by

each graph type that can be used to access

information about the graph via the

out_edges(), in_edges(), adjacent_vertices(),

and property map functions that are

described in the following sections. The

vertex_descriptor type is obtained through the

graph_traits class.



Out-Edges
template <class Graph> struct exercise_vertex {

//...
void operator()(const Vertex& v) const
{

typedef graph_traits<Graph> GraphTraits;
typename property_map<Graph, vertex_index_t>::type 
index = get(vertex_index, g);

std::cout << "out-edges: ";
typename GraphTraits::out_edge_iterator out_i, out_end;
typename GraphTraits::edge_descriptor e;
for (tie(out_i, out_end) = out_edges(v, g); 

out_i != out_end; ++out_i) {
e = *out_i;
Vertex src = source(e, g), targ = target(e, g);
std::cout << "(" << index[src] << ","
<< index[targ] << ") ";

}
std::cout << std::endl;
//...

}
//...

};

• The out-edges of a vertex are accessed with

the out_edges() function of the

IncidenceGraph interface.

• The out_edges() function takes two

arguments:

• the first argument is the vertex and

• the second is the graph object.

• The function returns a pair of iterators which

provide access to all of the out-edges of a

vertex (similar to how the vertices() function

returned a pair of iterators).

• The iterators are called out-edge iterators and

dereferencing one of these iterators gives an

edge descriptor object.

• An edge descriptor plays the same kind of role

as the vertex descriptor object, it is a "black

box" provided by the graph type.

• The code snippet prints the source-target pairs

for each out-edge of vertex v.

For vertex 0 the output is: out-edges: (0,1) (0,2) (0,3) (0,4)



Thank you


