CS302 - Data Structures
using C++

Topic: The Towers of Hanol

Kostas Alexis

The Towers of Hanoil

* Introduction to the problem

« The “Towers of Hanoi" is a mathematical puzzle where one has three pegs and n disks
and the goal is to move the entire stack to another rod, obeying a set of rules.

* The Rules of the “Towers of Hanoi”
« Only one disk may be moved at a time

« Each move consists of taking the upper disk from one of the stacks and placing it on
top of another stack: a disk can only be moved if it is the uppermost disk on a stack.

« No disk may be placed on top of a smaller disk.

The Towers of Hanoil

* Problem Statement

« Beginning with n disks on pole A and zero disks on poles B and C, solve
towers (n,A,B,C)

The Towers of Hanoil

* Problem Statement

« Beginning with n disks on pole A and zero disks on poles B and C, solve
towers (n,A,B,C)

« Solution
« With all disks on A, solve towers (n-1,4,C, B)
« With the largest disk on pole A and all the others on pole C, solve towers (n-1,A,B,C)

« With the largest disk on pole B and all the other disks on pole C, solve towers (n-
1,C,B,R)

The Towers of Hanoil

ALl L
LLlLL

Ll L4

B

The Towers of Hanoil

211

The Towers of Hanoil

[

The Towers of Hanoil

e

The Towers of Hanoil

T — T e

The Towers of Hanoil

I I

The Towers of Hanoil

I I

The Towers of Hanoil

S ——

The Towers of Hanoil

114

The Towers of Hanoil

211

The Towers of Hanoil

211

The Towers of Hanoil

**

The Towers of Hanoil

*

The Towers of Hanoil

112

The Towers of Hanoil

#include <iostream>
using namespace std;

void solveTowers (int n, char from rod, char to rod, char aux rod)
{
if (n == 1)

{
// Move from SRC to DST
cout << "Move disk 1 from rod " << from rod << " to rod " <<
to rod << endl;
return;

}

solveTowers (n-1, from rod, aux rod, to rod);
// Move from SRC: FROM ROD to DST: TO ROD with SPARE: AUX ROD
cout << "Move disk " << n << " from rod " << from rod << " to rod

" << to rod << endl;

// Move from SRC: AUX ROD to DST: TO ROD with SPARE: FROM ROD
solveTowers (n-1, aux rod, to rod, from rod);

}

int main ()

{
int n = 3; // Number of disks

solveTowers (n, 'A', 'C', 'B'); // A, B and C are names of rods
return 0;

§

"
AUTGHOMOUS
ROBOTS
LAR

The Towers of Hanoil

#include <iostream>
using namespace std;

void solveTowers (int n, char from rod, char to rod, char aux rod)
{
if (n == 1)

{
// Move from SRC to DST
cout << "Move disk 1 from rod " << from rod << " to rod " <<
to rod << endl;
return;

}

solveTowers (n-1, from rod, aux rod, to rod);
// Move from SRC: FROM ROD to DST: TO ROD with SPARE: AUX ROD
cout << "Move disk " << n << " from rod " << from rod << " to rod

" << to _rod << endl;

// Move from SRC: AUX ROD to DST: TO ROD with SPARE: FROM ROD
solveTowers (n-1, aux rod, to rod, from rod);

}

int main ()

{
int n = 3; // Number of disks

solveTowers (n, 'A', 'C', 'B"); // A, B and C are names of rods
return 0;

§

"
AUTGHOMOUS
ROBOTS
LAR

The Towers of Hanoil

#include <iostream>
using namespace std;

void solveTowers (int n, char from rod, char to rod, char aux rod)
{

if (n == 1)

{

cout << "Move disk 1 from rod " << from rod << " to rod " <<
to rod << endl;
return;

A
A
C
A
B
B
A

}

solveTowers (n-1, from rod, aux rod, to rod);

cout << "Move disk " << n << " from rod " << from rod << " to rod
" << to_rod << endl;

solveTowers (n-1, aux rod, to rod, from rod);

}

int main ()

{
int n = 3; // Number of disks
solveTowers (n, 'A', 'C', 'B");
return 0;

§
n

AUTONOMOUS
"ﬁ ROBOTE
LAR

The Towers of Hanoil

* Order of recursive calls that results from solveTowers (3,2, B, C)

solveTowers(3,A,B,0)

v L ¥

solveTowers(2,A,C,B)

solveTowers(1,A,B,C)

solveTowers(2,C,B,A)

|
v

solveTowers(1,A,B,C)

v

solveTowers(1,C,A,B)

\

4

solveTowers(1,A,C,B)

5

Y

solveTowers(1,B,C,A)

9

solveTowers(1,C,B,A)

10

Y

solveTowers(1,A,B,C)

3
M
o AUTCNOMOUS
".’LROBOTS
LAR

Thank you

