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The Towers of Hanoi

• Introduction to the problem

• The “Towers of Hanoi” is a mathematical puzzle where one has three pegs and n disks 
and the goal is to move the entire stack to another rod, obeying a set of rules. 

• The Rules of the “Towers of Hanoi”

• Only one disk may be moved at a time

• Each move consists of taking the upper disk from one of the stacks and placing it on 
top of another stack: a disk can only be moved if it is the uppermost disk on a stack.

• No disk may be placed on top of a smaller disk. 



The Towers of Hanoi

• Problem Statement

• Beginning with n disks on pole A and zero disks on poles B and C, solve 
towers(n,A,B,C)
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• Solution

• With all disks on A, solve towers(n-1,A,C,B)

• With the largest disk on pole A and all the others on pole C, solve towers(n-1,A,B,C)

• With the largest disk on pole B and all the other disks on pole C, solve towers(n-
1,C,B,A)
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The Towers of Hanoi
#include <iostream>

using namespace std;

void solveTowers(int n, char from_rod, char to_rod, char aux_rod)

{

if (n == 1)

{

// Move from SRC to DST

cout << "Move disk 1 from rod " << from_rod << " to rod " << 

to_rod << endl; 

return;

}

solveTowers(n-1, from_rod, aux_rod, to_rod);

// Move from SRC: FROM_ROD to DST: TO_ROD with SPARE: AUX_ROD

cout << "Move disk " << n << " from rod " << from_rod << " to rod 

" << to_rod << endl; 

// Move from SRC: AUX_ROD to DST: TO_ROD with SPARE: FROM_ROD

solveTowers(n-1, aux_rod, to_rod, from_rod);

}

int main()

{

int n = 3; // Number of disks

solveTowers(n, 'A', 'C', 'B'); // A, B and C are names of rods

return 0;

}
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The Towers of Hanoi
Move disk 1 from rod A to rod C

Move disk 2 from rod A to rod B

Move disk 1 from rod C to rod B

Move disk 3 from rod A to rod C

Move disk 1 from rod B to rod A

Move disk 2 from rod B to rod C

Move disk 1 from rod A to rod C

#include <iostream>

using namespace std;
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The Towers of Hanoi

• Order of recursive calls that results from solveTowers(3,A,B,C)



Thank you


