
CS302 - Data Structures
using C++

Kostas Alexis

Topic: The Towers of Hanoi



The Towers of Hanoi

• Introduction to the problem

• The “Towers of Hanoi” is a mathematical puzzle where one has three pegs and n disks 
and the goal is to move the entire stack to another rod, obeying a set of rules. 

• The Rules of the “Towers of Hanoi”

• Only one disk may be moved at a time

• Each move consists of taking the upper disk from one of the stacks and placing it on 
top of another stack: a disk can only be moved if it is the uppermost disk on a stack.

• No disk may be placed on top of a smaller disk. 



The Towers of Hanoi

• Problem Statement

• Beginning with n disks on pole A and zero disks on poles B and C, solve 
towers(n,A,B,C)



The Towers of Hanoi

• Problem Statement

• Beginning with n disks on pole A and zero disks on poles B and C, solve 
towers(n,A,B,C)

• Solution

• With all disks on A, solve towers(n-1,A,C,B)

• With the largest disk on pole A and all the others on pole C, solve towers(n-1,A,B,C)

• With the largest disk on pole B and all the other disks on pole C, solve towers(n-
1,C,B,A)



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi



The Towers of Hanoi

n+1



The Towers of Hanoi

n+1



The Towers of Hanoi

n+1



The Towers of Hanoi

n+1



The Towers of Hanoi

n+1



The Towers of Hanoi
#include <iostream>

using namespace std;

void solveTowers(int n, char from_rod, char to_rod, char aux_rod)

{

if (n == 1)

{

// Move from SRC to DST

cout << "Move disk 1 from rod " << from_rod << " to rod " << 

to_rod << endl; 

return;

}

solveTowers(n-1, from_rod, aux_rod, to_rod);

// Move from SRC: FROM_ROD to DST: TO_ROD with SPARE: AUX_ROD

cout << "Move disk " << n << " from rod " << from_rod << " to rod 

" << to_rod << endl; 

// Move from SRC: AUX_ROD to DST: TO_ROD with SPARE: FROM_ROD

solveTowers(n-1, aux_rod, to_rod, from_rod);

}

int main()

{

int n = 3; // Number of disks

solveTowers(n, 'A', 'C', 'B'); // A, B and C are names of rods

return 0;

}



The Towers of Hanoi
#include <iostream>

using namespace std;

void solveTowers(int n, char from_rod, char to_rod, char aux_rod)

{

if (n == 1)

{

// Move from SRC to DST

cout << "Move disk 1 from rod " << from_rod << " to rod " << 

to_rod << endl; 

return;

}

solveTowers(n-1, from_rod, aux_rod, to_rod);

// Move from SRC: FROM_ROD to DST: TO_ROD with SPARE: AUX_ROD

cout << "Move disk " << n << " from rod " << from_rod << " to rod 

" << to_rod << endl; 

// Move from SRC: AUX_ROD to DST: TO_ROD with SPARE: FROM_ROD

solveTowers(n-1, aux_rod, to_rod, from_rod);

}

int main()

{

int n = 3; // Number of disks

solveTowers(n, 'A', 'C', 'B'); // A, B and C are names of rods

return 0;

}



The Towers of Hanoi
Move disk 1 from rod A to rod C

Move disk 2 from rod A to rod B

Move disk 1 from rod C to rod B

Move disk 3 from rod A to rod C

Move disk 1 from rod B to rod A

Move disk 2 from rod B to rod C

Move disk 1 from rod A to rod C

#include <iostream>

using namespace std;

void solveTowers(int n, char from_rod, char to_rod, char aux_rod)

{

if (n == 1)

{

// Move from SRC to DST

cout << "Move disk 1 from rod " << from_rod << " to rod " << 

to_rod << endl; 

return;

}

solveTowers(n-1, from_rod, aux_rod, to_rod);

// Move from SRC: FROM_ROD to DST: TO_ROD with SPARE: AUX_ROD

cout << "Move disk " << n << " from rod " << from_rod << " to rod 

" << to_rod << endl; 

// Move from SRC: AUX_ROD to DST: TO_ROD with SPARE: FROM_ROD

solveTowers(n-1, aux_rod, to_rod, from_rod);

}

int main()

{

int n = 3; // Number of disks

solveTowers(n, 'A', 'C', 'B'); // A, B and C are names of rods

return 0;

}



The Towers of Hanoi

• Order of recursive calls that results from solveTowers(3,A,B,C)



Thank you


