
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Algorithm Efficiency



What is a Good Solution?

• A program incurs a real and tangible cost

• Computing time

• Memory required

• Difficulties encountered by users

• Consequences of incorrect actions by the program



What is a Good Solution?

• A program incurs a real and tangible cost

• Computing time

• Memory required

• Difficulties encountered by users

• Consequences of incorrect actions by the program

• A solution is good if …

• The total cost incurs …

• Overall all phases of its life … is minimal 



What is a Good Solution?

• Important elements of the solution

• Good structure

• Good documentation

• Efficiency



What is a Good Solution?

• Important elements of the solution

• Good structure

• Good documentation

• Efficiency

• Be concerned with efficiency when

• Developing underlying algorithm

• Choice of objects and design of interaction between these objects



Measuring Efficiency of Algorithms

• Important because

• Choice of algorithm has significant impact

• Examples

• Responsive word processors

• Internet search engines

• Real-time guidance systems

• Autonomous cars



Measuring Efficiency of Algorithms

• Analysis of algorithms

• The area of computer science that provides tools for contrasting efficiency of different algorithms

• Comparison of algorithms should focus on significant differences in efficiency

• We consider comparisons of algorithms, not programs



Measuring Efficiency of Algorithms

• Difficulties with comparing programs (instead of algorithms)

• How are the algorithms coded

• What computer will be used

• What data should the program use

• Algorithms analysis should be independent of

• Specific implementations, computers, and data



Measuring Efficiency of Algorithms

• Types of complexity

• Time complexity

• Speed (number of operations)

• Space complexity

• Storage (memory or disk)

• Inverse relationship

• Faster algorithms can require more 
space

• Reducing storage can increase 
execution time

• Even a simple program can be 
“inefficient” 

• What is an efficient algorithm?

• Algorithms take time to execute

• Algorithms need storage for data and 
variables

• Complexity

• Time and storage requirements of an 
algorithm

• Analysis of algorithms

• Measuring of the complexity of an algorithm



Measuring Complexity

• Measuring Complexity

• Express complexity in problem size

• Number of items processed by algorithm

• Usually represented by n

• Cannot compute actual time for an 
algorithm

• Compute growth-rate function

• Simple function that is directly proportional 
to the algorithms time requirement

• Gives common basis for comparison



Measuring Complexity

• Measuring Complexity

• Express complexity in problem size

• Number of items processed by algorithm

• Usually represented by n

• Cannot compute actual time for an 
algorithm

• Compute growth-rate function

• Simple function that is directly proportional 
to the algorithms time requirement

• Gives common basis for comparison

• Comparing algorithms should be 
independent of 

• Specific Implementation

• How are the algorithms coded

• Computer

• What computer is used

• Data

• The data should the program uses



Growth-Rate Functions

• Find the sum of the first n positive integers
1 + 2 + 3 + … + n-1 + n

for an integer n > 0



Growth-Rate Functions

• Find the sum of the first n positive integers
1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I



Growth-Rate Functions

• Find the sum of the first n positive integers
1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1



Growth-Rate Functions

• Find the sum of the first n positive integers
1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2



Growth-Rate Functions

• Find the sum of the first n positive integers
1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2

Algorithm B takes noticeably longer



Growth-Rate Functions

• Find the sum of the first n positive integers

• Finding the growth-rate function

• Count basic operations

1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2

Algorithm B takes noticeably longer



Growth-Rate Functions

• Find the sum of the first n positive integers

• Finding the growth-rate function

• Count basic operations

1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2

Algorithm B takes noticeably longer

Count “action” statements

 Statements directly related to accomplishing goal – Additions, 

Multiplications, Comparisons, Moves

 Ignore “bookkeeping” statements



Growth-Rate Functions

• Find the sum of the first n positive integers

• Finding the growth-rate function

• Count basic operations

1 + 2 + 3 + … + n-1 + n

for an integer n > 0

Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2

Additions n n(n+1)/2

Multiplications

Divisions

0

0

0

0

1

1

1

Total Operations n (n2+n)/2 3



Growth-Rate Functions



Growth-Rate Functions



Growth-Rate Functions
For very large n: n2 is much larger than n

so (n2+n)/2 behaves like n2/2

n2/2 behaves like n2

so (n2+n)/2 behaves like n2

Consider only the dominant term in 

each growth-rate function



Growth-Rate Functions

• Number of operations required as a function of n

n log(logn) logn log2n n nlogn n2 n3 2n n!

10 2 3 11 10 33 103 102 1024 3528800

102 3 7 44 100 664 106 104 1.2677*103
0

9.33*10157

103 3 10 99 1000 9966 109 106 10.71*10300 *

104 4 13 177 10000 132877 1012 108 * *

105 4 17 276 1000000 1600964 1016 1010 * *

106 4 20 397 1000000 19931569 1018 1012 * *



Growth-Rate Functions

• Number of operations required as a function of n

n log(logn) logn log2n n nlogn n2 n3 2n n!

10 2 3 11 10 33 103 102 1024 3528800

102 3 7 44 100 664 106 104 1.2677*103
0

9.33*10157

103 3 10 99 1000 9966 109 106 10.71*10300 *

104 4 13 177 10000 132877 1012 108 * *

105 4 17 276 1000000 1600964 1016 1010 * *

106 4 20 397 1000000 19931569 1018 1012 * *



Growth-Rate Functions

• Number of operations required as a function of n



Growth-Rate Functions

• Representing an Algorithm’s complexity
• Big O notation
• Order of at most n

• Order of at most n2

• Order of at most 1
Algorithm A

sum = 0

for i = 1 to n

sum = sum + I

Algorithm B

sum = 0

for i = 1 to n

for j = 1 to i

sum = sum + 1

Algorithm C

sum = n*(n+1)/2

Total Operations n (n2+n)/2 3

Big O Notation O(n) O(n2) O(1)



Growth-Rate Functions

• Effect of doubling the problem size on an algorithm’s time 
requirement

Growth-Rate Function for Size n

Problems

Growth-Rate Function for Size 
2n Problems

Effect on Time Requirement

1 1 None

logn 1 + logn Negligible

n 2n Doubles

nlong 2n logn + 2n Doubles then add 2n

n2 (2n)2 Quadruples

n3 (2n)3 Multiplies by 8
2n

22n Squares



Analysis and Big O Notation

• Algorithm A is said to be order f(n)
• Denoted as O(f(n))

• Function f(n), called algorithm’s growth rate function

• Notation with capital O denotes order

• Algorithm A of order denoted O(f(n))
• Constants 𝑘 and 𝑛0 exist such that 

• A requires no more than 𝑘𝑓(𝑛) time units

• For problem of size 𝑛 ≥ 𝑛0



Analysis and Big O Notation

• Order of growth of some common functions
𝑂 1 < 𝑂 𝑙𝑜𝑔2𝑛 < 𝑂 𝑛 < 𝑂𝑛𝑙𝑜𝑔2𝑛) < 𝑂 𝑛2 < 𝑂 𝑛3 < 𝑂(2𝑛)



Analysis and Big O Notation

• Worst-case analysis
• Worst case analysis usually considered

• Easier to calculate, thus more common

• Average-case analysis
• More difficult to perform

• Must determine relative probabilities of encountering problems of a given size



Keeping your Perspective

• ADT used makes a difference
• Array-based getEntry is O(1)

• Link-based getEntry is O(n)

• Choosing implementation of ADT
• Consider how frequently certain operations will occur

• Seldom used but critical operations must also be efficient



Analysis and Big O Notation

• If problem size is always small
• Possible to ignore algorithm’s efficiency

• Weight trade-offs between
• Algorithm’s time and memory requirements

• Compare algorithms for style and efficiency



Note: Efficiency of Searching Algorithms

• Sequential search
• Worst case: O(n)

• Average case: O(n)

• Best case: O(1)

• Binary search
• Worst case: O(log2n)

• At the same time, maintaining array in sorted order requires overhead cost which can be 
substantial



Thank you


