
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Binary Search Tree Implementation

Binary Search Trees

• Definition: A Binary Search Tree (BST) is a binary tree where each node has a
Comparable key (and an associated value) and satisfies the restriction that the key in
any node is larger than the keys in all nodes in that node’s left subtree and smaller than
the keys in all nodes in that node’s right subtree.

Binary Search Trees

• Binary Tree property

• Each node has <= 2 children

• Result

• Storage is small

• Operations are simple

• Average depth is small

• Search Tree property

• All keys in left subtree smaller than root’s key

• All keys in right subtree larger than root’s key

• Result

• Easy to find any given key

• Insert/delete by changing links

4

121062

115

8

14

13

7 9

Binary Search Trees

• Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE
NOT A

BINARY SEARCH TREE

7

15

Binary Search Trees

• Binary Search Tree (BST)

• Binary tree that has the following properties for each node n:

• n’s value is > all values in n’s left subtree TL

• n’s value is < all values in n’s right subtree TR

• Both TL and TR are binary search trees

Binary Search Trees

• Binary Search Tree (BST)

• Binary tree that has the following properties for each node n:

• n’s value is > all values in n’s left subtree TL

• n’s value is < all values in n’s right subtree TR

• Both TL and TR are binary search trees

• A binary tree whose nodes contain objects and

• Data in a node is greater than the data in the node’s left child

• Data in a node is less than the data in the node’s right child

Binary Search Trees

Jared

Brittany Megan

Brett Doug Brett Doug

Binary Search Trees

Jared

Brittany Megan

Brett Doug Brett Doug

An In-Order Traversal is “In Order” for a Binary Search Tree

Link-based Implementation of the ADT
Binary Search Tree
• Uses same node objects as for binary-tree implementation

Link-based Implementation of the ADT
Binary Search Tree
• Uses same node objects as for binary-tree implementation

• Class BinaryNode will be used

Link-based Implementation of the ADT
Binary Search Tree
• Uses same node objects as for binary-tree implementation

• Class BinaryNode will be used

• Recursive search algorithm is the basis for operations

Link-based Implementation of the ADT
Binary Search Tree
• Adding “Kody” to a Binary Search Tree

Link-based Implementation of the ADT
Binary Search Tree
• Adding “Kody” to a Binary Search Tree

• Addition is “like search” we first find where Kody should be if it was there.

Link-based Implementation of the ADT
Binary Search Tree
• Adding “Kody” to a Binary Search Tree

• Addition is “like search” we first find where Kody should be if it was there.
• Terminates at Mia

Link-based Implementation of the ADT
Binary Search Tree
• Adding “Kody” to a Binary Search Tree

• Addition is “like search” we first find where Kody should be if it was there.
• Terminates at Mia

• As Mia has no left child, the addition is simple, requiring only that Mia’s left child pointer
points to a new node that contains Kody.

Notes for the class BinarySearchTree

• In this lecture-approach: based on BinaryNodeTree

• Tree Root Data Field rootPtr

• “Disable” any methods that could change a value

• BinaryNode Tree

• void setRootData(const ItemType& newData)

Link-based Implementation of the ADT
Binary Search Tree
• Method add

template<class ItemType>

bool BinarySearchTree<ItemType>::add(const ItemType& newData)

{

auto newNodePtr = std::make_shared<BinaryNode<ItemType>>(newData);

rootPtr = placeNode(rootPtr, newNodePtr);

return true;

} // end add

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Jared

Brittany Megan

Brett Doug Brett Doug

add (Chad)

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Jared

Brittany Megan

Brett Doug Brett Doug

add (Chad)
Chad

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Jared

Brittany Megan

Brett Doug Brett Doug

add (Chad)

Chad

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Jared

Brittany Megan

Brett Doug Brett Doug

add (Chad)

Chad

Link-based Implementation of the ADT
Binary Search Tree
• Method add

• Must maintain binary search tree structure

• Every addition to a binary search tree adds a new leaf to the tree

Jared

Brittany Megan

Brett Doug Brett Doug

add (Chad)

Chad

Link-based Implementation of the ADT
Binary Search Tree
• Refinement of addition algorithm

// Recursively places a given new node at its proper position in a binary search tree

placeNode(subTreePtr: BinaryNodePointer, newNodePtr: BinaryNodePointer): BindayNodePointer

{

if (subTreePtr == nullptr)

return newNodePtr

else if (subTreePtr->getItem() > newNodePtr->getItem())

{

tempPtr = placeNode(subTreePtr->getLeftChildPtr(), newNodePtr)

subTreePtr->setLeftChildPtr(tempPtr)

}

else

{

tempPtr = placeNode(subTreePtr->getRightChildPtr(), newNodePtr)

subTreePtr->setRightChildPtr(tempPtr)

}

return subTreePtr

}

Link-based Implementation of the ADT
Binary Search Tree
• Adding new data to a binary search tree

Link-based Implementation of the ADT
Binary Search Tree
• Removing an entry.

• More involved than the adding process

• First use the search algorithm to locate the specified item and then, if it is found, you must remove it from
the tree

• While doing so, maintain a Binary Search Tree structure.

Link-based Implementation of the ADT
Binary Search Tree
• First draft of the removal algorithm

// Removes the given target from a binary search tree

// Returns true if the removal is successful or false otherwise

removeValue(target: ItemType): boolean

{

Locate the target by using the search algorithm

if (target is found)

{

Remove target from the tree

return true

}

else

return false

}

Link-based Implementation of the ADT
Binary Search Tree
• Must maintain binary search tree structure

Link-based Implementation of the ADT
Binary Search Tree
• Cases for node N containing item to be removed

1. Case 1: N is a leaf

2. Case 2: N has only one child

3. Case 3: N has two children

Link-based Implementation of the ADT
Binary Search Tree
• Cases for node N containing item to be removed

• Case 1: N is a leaf

• Remove leaf containing target

• Set pointer in parent nullptr

Link-based Implementation of the ADT
Binary Search Tree
• Cases for node N containing item to be removed

• Case 2: N has only left (or right) child – cases are symmetrical

• After N removed, all data items rooted at L (or R) are adopted by root of N

• All items adopted are in correct order, binary search tree property preserved

Link-based Implementation of the ADT
Binary Search Tree
• Cases for node N containing item to be removed

• Case 3: N has two children

• Harder case.

• One cannot simply remove the parent node.

• Find a node easier to remove and replace the node elements.

Link-based Implementation of the ADT
Binary Search Tree
• Cases for node N containing item to be removed

• Case 3: N has two children

• Locate another node M easier to remove from tree than N

• Copy item that is in M to N

• Remove M from tree

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M R

/

/ / / // /

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M R

/

/ / / // /

remove(R)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M

/

/ / / /

/

remove(R)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M

/

/ / / /

/

remove(P)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M

/

/ / / /

/

remove(P)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

M

/

/ /

/ /

remove(P)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M R

/

/ / / // /

remove(K)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M R

/

/ / / // /

remove(K)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M R

/

/ / / // /

remove(K)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

K

H

C

P

M

R

/

/ / / // /

remove(K)

Link-based Implementation of the ADT
Binary Search Tree

K

H P

C M R

leftChild rightChilddata

H

C

P

M

R

/

/ / / /

remove(K)

Link-based Implementation of the ADT
Binary Search Tree
• Case 2 for removeValue: The data item to remove is in a node N that has only a left child

and whose parent is node P

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

// Removes the given target from the binary search tree to which subTreePtr points.
// Removes a pointer to the node at this tree location after the value is removed.
// Sets isSuccessful to true if the removal is successful, or false otherwise
removeValue(subTreePtr: BinaryNodePointer, target: ItemType, isSuccessful: boolean&): BinaryNodePointer
{

if (subTreePtr == nullptr)
{

isSuccessful = false
}
else if (subTreePtr->getItem() == target)
{

// Item is in the root of some subtree
subTreePtr = removeNode(subTreePtr) // Remove the item
isSuccessful = true

}
else if (subTreePtr->getItem() > target)
{

// Search the left subtree
tempPtr = removeValue(subTreePtr->getLeftChildPtr(), target, isSuccessful)
subTreePtr->setLeftChildPtr(tempPtr)

}
else

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

else

{

// Search the right subtree

tempPtr = removeValue(subTreePtr->getRightChildPtr(), target, isSuccessful)

subTreePtr->setRightChildPtr(tempPtr)

}

return subTreePtr

}

// Removes the data item in the node N to which nodePtr points.

// Returns a pointer to the node at this tree location after the removal

removeNode(nodePtr: BinaryNodePointer): BinaryNodePointer

{

if (N is a leaf)

{

// Remove leaf from the tree

Delete the node to which nodePtr points (done for us if nodePtr is a smart pointer)

return nodePtr

}

else if (N has only one child C)

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

else if (N has only one child C)

{

// C replaces N as the child of N’s parent

if (C is a left child)

nodeToConnectPtr = nodePtr->getLeftChildPtr()

else

nodeToConnectPtr = nodePtr->getRightChildPtr()

Delete the node to which nodePtr points (done for us if nodePtr is a smart pointer)

return nodeToConnectPtr

}

else // N has two children

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

else // N has two children

{

// Find the inorder successor of the entry in N: it is in the left subtree rooted at N’s right child

tempPtr = removeLeftmostNode(nodePtr->getRightChildPtr(), newNodeValue)

nodePtr->setRightChildPtr(tempPtr)

nodePtr->setItem(newNodeValue) // Put replacement value in nodeN

return nodePtr

}

}

// Removes the leftmost node in the left subtree of the node pointed to by nodePtr

// Sets inorder Successor to the value in this node

// Returns a pointer to the revised subtree

removeLeftmostNode(nodePtr: BinaryNodePointer, inorderSuccessor: ItemType&): BinaryNodePointer

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

removeLeftmostNode(nodePtr: BinaryNodePointer, inorderSuccessor: ItemType&): BinaryNodePointer

{

if (nodePtr->getLeftChildPtr() == nullptr)

{

// This is the node you want; it has no left child, but it might have a right subtree

inorderSuccessor = nodePtr->getItem()

return removeNode(nodePtr)

}

else

{

tempPtr = removeLeftmostNode(nodePtr->getLeftChildPtr(), inorderSuccessor)

nodePtr->setLeftChildPtr(tempPtr)

return nodePtr

}

}

Link-based Implementation of the ADT
Binary Search Tree
• Final draft of the removal algorithm (method removeNode uses findSuccesorNode)

• Public method remove

// Removes the given data from this binary search tree

remove(target: ItemType): boolean

{

isSuccessful = false

rootPtr = removeValue(rootPtr, target, isSuccessful)

return isSuccessful

}

Link-based Implementation of the ADT
Binary Search Tree
• Recursive removal of node N

Link-based Implementation of the ADT
Binary Search Tree
• Recursive removal of node N (cont)

Link-based Implementation of the ADT
Binary Search Tree
• Recursive removal of node N (cont)

Link-based Implementation of the ADT
Binary Search Tree
• Algorithm findNode

// Locates the node in the binary search tree to which subTreePtr points and that contains the value target.

// Returns either a pointer to the located node or nullptr if such a node is not found.

findNode(subTreePtr: BinaryNodePointer, target: ItemType): BinaryNodePointer

{

if (subTreePtr == nullptr)

return nullptr // Not found

else if (subTreePtr->getItem() == target)

return subTreePtr; // Found

else if (subTreePtr->getItem() > target)

// Search left subtree

return findNode(subTreePtr->getLeftChildPtr(), target)

else

// Search right subtree

return findNode(subTreePtr->getRightChildPtr(), target)

}

Link-based Implementation of the ADT
Binary Search Tree
• Algorithm findNode

• The method findNode is designed to be utilized by a method getEntry.

• The operation getEntry must return the data item with the desired value if it exists;
otherwise it must throw an exception NotFoundException.

• The method, therefore, calls findNode and checks its return value.

• If the desired target is found, getEntry returns it.

• If findNode returns nullptr, getEntry throws an exception.

The Class BinarySearchTree

• A header file for the link-based implementation of the class BinarySearchTree

// Link-based implementation of the ADT binary search tree.

#ifndef BINARY_SEARCH_TREE_

#define BINARY_SEARCH_TREE_

#include “BinaryTreeInterface.h”

#include “BinaryNode.h”

#inlucde “BinaryNodeTree.h”

#include “NotFoundException.h”

#include “PrecondViolatedExcept.h”

#include <memory>

template<class ItemType>

class BinarySearchTree: public BinaryNodeTree<ItemType>

{

private:

std::shared_ptr<BinaryNode<ItemType>> rootPtr;

The Class BinarySearchTree

• A header file for the link-based implementation of the class BinarySearchTree

protected:

// PROTECTED UTILITY METHODS SECTION:

// RECURSIVE HELPER METHODS FOR THE PUBLIC METHODS

// Places a given new node at its proper position in this binary search tree

auto placeNode(std::shared_ptr<BinaryNode<ItemType>> subTreePtr,

std::shared_ptr<BinaryNode<ItemType>> newNode);

// Removes the given target value from the tree while maintaining a binary search tree

auto removeValue(std::shared_ptr<BinaryNode<ItemType>> subTreePtr,

const ItemType target,

bool& isSuccessful) override;

// Removes a given node from a tree while maintaining a binary search tree

auto removeNode(std::shared_ptr<BinaryNode<ItemType>> nodePtr);

Why protected? Why not private?

The Class BinarySearchTree

• A header file for the link-based implementation of the class BinarySearchTree

// Removes the leftmost node in the left subtree of the node pointed to by nodePtr

// Sets inorderSuccessor to the value in this node

// Returns a pointer to the revised subtree

auto removeLeftmostNode(std::shared_ptr<BinaryNode<ItemType>>subTreePtr,

ItemType& inorderSuccessor);

// Returns a pointer to the node containing the given value, or nullptr if not found

auto findNode(std::shared_ptr<BinaryNode<ItemType>> treePtr,

const ItemType& target) const;

public:

// CONSTRUCTOR AND DESTRUCTOR SECTION

BinarySearchTree();

BinarySearchTree(const ItemType& rootItem);

BinarySearchTree(const BinarySearchTree<ItemType>& tree);

virtual ~BinarySearchTree();

The Class BinarySearchTree

• A header file for the link-based implementation of the class BinarySearchTree

// PUBLIC METHODS SECTION

bool isEmpty() const;

int getHeight() const;

int getNumberOfNodes() const;

ItemType getRootData() const throw(PrecondViolatedExcept);

void setRootData(const ItemType& newData);

bool add(const ItemType& newEntry);

bool remove(const ItemType& target);

void clear();

ItemType getEntry(const ItemType& anEntry) const throw(NotFoundException)

bool contains(const ItemType& anEntry) const;

The Class BinarySearchTree

• A header file for the link-based implementation of the class BinarySearchTree

// PUBLIC TRAVERSALS SECTION

void preorderTraverse(void visit(ItemType&)) const;

void inorderTraverse(void visit(ItemType&)) const;

void postorderTraverse(void visit(ItemType&)) const;

// OVERLOADED OPERATION SECTION

BinarySearchTree<ItemType>& operator = (const BinarySearchTree<ItemType>& rightHandSide);

}; // end BinarySearchTree

#include “BinarySearchTree.cpp”

#endif

Saving a Binary Search Tree in a File

• Saving the binary search tree involves saving its values and restoring it correctly.

• Saving a binary search tree and then restoring it to its original shape:

• First algorithm restores a binary search tree to exactly the same shape it had before it was saved

Saving a Binary Search Tree in a File

• An initially empty binary search tree after the addition of 60, 20, 10, 40, 30, 50, and 70

Saving a Binary Search Tree in a File

• An initially empty binary search tree after the addition of 60, 20, 10, 40, 30, 50, and 70

• If you now use the add method to add these values to a BST you recover the original tree.

Saving a Binary Search Tree in a File

• Saving a binary search tree and then restoring it to a balanced shape:

• Do we necessarily want to recover its original shape?

• We can use the same data to crate set of BSTs

• The shape of the BST affects efficiency of operations

• We decide to recover a balanced tree.

Saving a Binary Search Tree in a File

• Saving a binary search tree and then restoring it to a balanced shape:

• Do we necessarily want to recover its original shape?

• We can use the same data to crate set of BSTs

• The shape of the BST affects efficiency of operations

• We decide to recover a balanced tree.

• Remember:

Saving a Binary Search Tree in a File

• Use preorder traversal to save binary search tree in a file

• Restore to original shape by using method add

Saving a Binary Search Tree in a File

• Use preorder traversal to save binary search tree in a file

• Restore to original shape by using method add

• Balanced binary search tree increases efficiency of ADT operations

Saving a Binary Search Tree in a File

• Gaining Insight: A full tree saved in a file by using inorder traversal

Saving a Binary Search Tree in a File

• Gaining Insight: A full tree saved in a file by using inorder traversal

• But trees are not always full

• What we care most is to have a tree of minimum height

Saving a Binary Search Tree in a File

• Gaining Insight: A tree of minimum height that is not complete

The Class BinarySearchTree

• Building a minimum-height binary search tree
// Builds a minimum-height binary search tree from n sorted values in a file.

// Returns a pointer to the tree’s root.

readTree(treePtr: BinaryNodePointer, n: integer): BinaryNodePointer

{

if (n > 0)

{

treePtr = pointer to new node with nullptr as its child pointers

// Construct the left subtree

leftPtr = readTree(treePtr->getLeftChildPtr(), n / 2)

treePtr->setLeftChildPtr(leftPtr)

// Get the data item for this node

rootItem = next data item from file

treePtr->setItem(rootItem)

// Construct the right subtree

rightPtr = readTree(treePtr->getRightChildPtr(), (n-1) / 2)

treePtr->getRightChildPtr(rightPtr)

return treePtr

}

return nullptr

}

The Class BinarySearchTree

• Building a minimum-height binary search tree

• In conclusion:
• Easy to build a balanced tree if the data in the file is sorted.

• You need n so that you can determine the middle and, in turn, the number of nodes in the left and right subtrees of the tree’s root.

• Knowing these numbers is a simple matter of counting nodes as you traverse the tree and then saving the number in a file that the restore
operation can read.

Tree Sort

• Tree sort uses a binary search tree
// Sorts the integers in an array into ascending order

treeSort(anArray: array, n: integer)

{

Add anArray’s entries to a binary search tree bst

Traverse bst in inorder. As you visit bst’s nodes, copy their data items into successive locations of

anArray

}

General Trees

• A general tree or an n-ary tree with n=3

General Trees

• An implementation of a general tree and its equivalent binary tree

General Trees

• An implementation of the n-ary tree

Thank you

