
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Safe Memory Management using Smart Pointers



Raw Pointers

• Allocate memory in free store by using the new operator

• Returns reference to newly created object in memory

• Store reference to object in a pointer variable

• Use pointer variable to access object

• Copy reference to another pointer variable

• Creates alias to same object



Raw Pointers

• Use delete operator to deallocate object’s memory

• Must also set to nullptr any pointer variables that referenced the object

• Need to keep track number of aliases that reference an object … else results in 

• Dangling pointers

• Memory leaks

• Other errors (program crash, wasted memory, …)



Raw Pointers

• Languages such as Java and Python disallow direct reference to objects

• Use reference counting to track number of aliases that reference an object

• Known as the “reference count”

• Language can detect when object no longer has references

• Dangling pointers

• Memory leaks

• Other errors (program crash, wasted memory, …)



Smart Pointers

• C++ now supports “smart” pointers (or managed pointers)

• Act like raw pointers

• Also provide automatic memory management



Smart Pointers

• C++ now supports “smart” pointers (or managed pointers)

• Act like raw pointers

• Also provide automatic memory management

• When you declare a smart pointer

• Placed on application stack

• Smart pointer references an object – object is “managed”



Smart Pointers

• Smart-pointer templates

• shared_ptr – provides shared ownership of an object



Smart Pointers

• Smart-pointer templates

• shared_ptr – provides shared ownership of an object

• unique_ptr – no other point can reference same object



Smart Pointers

• Smart-pointer templates

• shared_ptr – provides shared ownership of an object

• unique_ptr – no other point can reference same object

• weak_ptr – reference to an object already managed by a shared pointer / it does not 
have ownership of the object



Using Shared Pointers

• Shared pointers – manager object referencing a managed object



Using Shared Pointers

• A shared pointer

• Provides a safe mechanism to implement shared object ownership

• Maintains a count of aliases to an object

• Decreases or increases the reference count of a managed object every time an 
instance is created or goes out of scope, or is assigned nullptr

• Calls destructor of a managed object when reference count reaches 0



Revised Node and LinkedList Classes

• Goal: Use shared pointers in previously described Node and LinkedList classes

• Help ensure memory is handled correctly. 



Revised Node and LinkedList Classes

• The revised header file for the class Node



Revised Node and LinkedList Classes

• The revised implementation file for the class Node 



Revised Node and LinkedList Classes

• The insert method for LinkedList



Revised Node and LinkedList Classes

• The remove method for LinkedList



Revised Node and LinkedList Classes

• The clear method for LinkedList



Using Unique Pointers

• Different ways to create unique pointers



Using Unique Pointers

• Function that accepts ownership of an object and then returns it to the caller



Using Unique Pointers

• A unique pointer

• Has solitary ownership of its managed object

• Behaves as if it maintains a reference count of either 0 or 1 for its managed object

• Can transfer its unique ownership of its managed object to another unique pointer 
using method move

• Cannot be assigned to another unique pointer



Using Weak Pointers

• Weak pointer only observes managed object

• But does not have ownership

• Therefore, cannot affect its lifetime

• After these statements execute, reference count for object managed by 
sharedPtr1 is 3



Using Weak Pointers

• Weak and shared ownership of a managed object



Using Weak Pointers

• Partial header file for the class DoubleNode



Using Weak Pointers

• A weak pointer

• References but does not own an object referenced by shared pointer

• Cannot affect the lifetime of managed object

• Does not affect reference count of managed object

• Has method lock to provide a shared-pointer version of its reference

• Has method expired to detect whether its reference object no longer exists. 



Other Smart Pointer Features

• Method common to all smart pointers

• reset

• Method common to all shared and unique pointers

• get

• Methods exclusive to shared pointers

• unique

• use_count

• Methods exclusive to unique pointers

• release

• Unique pointers with arrays

• Use a unique pointer to manage a dynamic array



Thank you


