CS302 - Data Structures
using C++
Topic: Dijkstra's Algorithm for Shortest Paths

Kostas Alexis

Shortest Paths on Graphs: Dijkstra

« A Formal Definition: Dikstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

Graph geodesic: a shortest path

between two graph vertices (u,v) of a
graph

Shortest Paths on Graphs: Dijkstra

« A Formal Definition: Dikstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

« The worst-case running time for the Djikstra algorithm on a graph with n nodes and m
edges is 0(n?) because it allows for directed cycles.

Shortest Paths on Graphs: Dijkstra

« A Formal Definition: Dikstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

« The worst-case running time for the Djikstra algorithm on a graph with n nodes and m
edges is 0(n?) because it allows for directed cycles.

It even finds the shortest paths from a source node s to all other nodes in the graph.

Shortest Paths on Graphs: Dijkstra

A Formal Definition: Dikstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

The worst-case running time for the Djikstra algorithm on a graph with n nodes and m
edges is 0(n?) because it allows for directed cycles.

It even finds the shortest paths from a source node s to all other nodes in the graph.
This is basically 0(n?) for node selection and 0(m) for distance updates.

Shortest Paths on Graphs: Dijkstra

A Formal Definition: Dikstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

« The worst-case running time for the Djikstra algorithm on a graph with n nodes and m
edges is 0(n?) because it allows for directed cycles.

It even finds the shortest paths from a source node s to all other nodes in the graph.
 This is basically 0(n?) for node selection and 0(m) for distance updates.

« While 0(n?) is the best possible complexity for dense graphs, the complexity can be
improved significantly for sparse graphes.

ow do we get to the airporte

ISYNG 9 1 GIOuIoG

Park Act Ctr

1 oy

University of Nevada
Department of...

PAIG #00Y

oth St R
= Rail,City Casino o S
e »_;@—.Nuggegasmo Resort O F
Q Pinion Park T [Nugget Ave
s Pinion Par /|
N Kietzke> oy=e [/
Im nter ,"‘
Reno , o Walmart Superce l
SUri € i
Baldini's Sports ¢/
Club Cal Neva @ Renown Regional @ 5 Casino and Restagrant Q| ==
RIVERWALK Medical Center ﬁn?"ll;?ln '
DISTRICT See See Motor CoffeeCt : U & 14 min
¥ Ryland St ¢ /" 5.9 miles
S L
u ff ¢ I L\be\‘ ; ’
I/
g U s -
California Ave [e
g MIDTOWN > O/Enterpnse Car Sales
3 ¥ Vruey
2 g
n %- MWS’
: 2
é e yGileny Vassar St é‘
: ura f g
> ura =
¢
Mt Rose St i <
e Earl Wooster (|
High School = ‘ o KTVN
[B5]
(395 C3) b »
— Plumb Lane Plumb Lane <
stone House Cafe 3
S = Costco Wholesale o %
Virginia Lake o
s 550 gReno-Tahoe
International Airport
U6

§

"
AUTGHOMOUS
ROBOTS
LAR

Single-Source Shortest Path Problem

* The problem of finding shortest paths from a source vertex v to all other vertices in the
graph.

« Weighted graph ¢ = (V,E)

« Source vertexs € V to all verticesv e V

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php<ecurid=54537901 ‘

https://commons.wikimedia.org/w/index.php?curid=54537901

Dijkstra’s Algorithm

» Solution to the single-source shortest path problem in graph theory
» Both directed and undirected graphs
« All edges must have nonnegative weights
« Graph must be connected

Dijkstra’s Algorithm Pseudocode

dist[s] = 0 // distance to source vertex is zero
forallveV —{s}
do dist[v] = o // set all other vertices to infinity
S=0 // S, the set of visited vertices is initially empty
Q =V // Q, the queue initially contains all vertices
while Q # @ // while the queue is not empty
do u = mindistance(Q, dist) // select the element of Q with the min distance
S = SU{u} // add u to list of visited vertices
for all v € neighbors(u)
do if dist(v) > dist(u) + w(u, v) // if new shortest path found
thend(v) = d(u) + w(u,v) // set new value of shortest path

return dist

Output of Dijkstra’s Algorithm

« QOriginal algorithm outputs the value of the shortest path not the path itself
« With slight modification we can obtain the path also

Value §(1,6) =6
Path: {1,2,5,6}

Why it works

 Lemma 1: Optimal Substructure
« The subpath of any shortest path is itself a shortest path
 Lemma 2: Triangle Inequality
 If §(u,v) is the shortest path length between any u and v, then §(u,v) < §(u,v)+6(x,V)

Why do we use Dikstra’s Algorithm

« Algorithms for calculating the shortest path from source to sink about as
computationally expensive as calculating shortest paths from source to any vertex.

Dijkstra’s Algorithm Implementation

« C++ Implementation of Dijkstra’s algorithm

// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph

#include <stdio.h>
#tinclude <limits.h>

// Number of vertices in the graph
#tdefine V 9

// A utility function to find the vertex with minimum distance value, from

{/ th? s?t of ver.‘tice? not yet included in shortest path tree F|nd VerTeX WI-I-h minimum
int minDistance(int dist[], bool sptSet[]) .
(distance value from the

// Initialize min value set of vertices not in the path

free

int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)

min = dist[v], min_index = v;

return min_index;

§

"
AUTGHOMOUS
ROBOTS
LAR

Dijkstra’s Algorithm Implementation

« C++ Implementation of Dijkstra’s algorithm

int printSolution(int dist[], int n)
{
printf("Vertex Distance from Source\n");
for (int 1 = 0; 1 < V; i++)
printf("%d tt %d\n", i, dist[i]);
}

Dijkstra’s Algorithm Implementation

« C++ Implementation of Dijkstra’s algorithm

// Function that implements Dijkstra's single source shortest path algorithm

// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)

int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i C)LJTF)LJT C]FFC])/

bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
// path tree or shortest dista TrLJEB If \/EBFTEE)(IrW TFWEB F)C]Tk\

// Initialize all distances as INFINITE and stpSet[] as false
for (int i = @; 1 < V; i++) ||’]|'|'|C|||Z€

dist[i] = INT_MAX, sptSet[i] = false;

// Distance of source vertex from itself is always ©
dist[src] = 0;

// Find shortest path for all vertices
for (int count = @; count < V-1; count++)

// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration. F)lczk(minimum CjIST'\/EBFTEB)(

int u = minDistance(dist, sptSet);

§

"
AUTGHOMOUS
ROBOTS
LAR

Dijkstra’s Algorithm Implementation

« C++ Implementation of Dijkstra’s algorithm

// Mark the picked vertex as processed

mark picked as visited

// Update dist value of the adjacent vertices of the picked vertex.

for (int v = @5 v < Vj v++) distances updated for
vertices not visited, u-v

sptSet[u] = true;

// u to v, and total weight of path from src to v through u is decreaqases

// Update dist[v] only if is not in sptSet, there is an edge from edge exists and Weigh’r

// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u]+graph[u][v] < dist[Vv])
dist[v] = dist[u] + graph[u][Vv];

// print the constructed distance array
printSolution(dist, V);

§

"
AUTGHOMOUS
ROBOTS
LAR

https://ide.geeksforgeeks.org/jM5Z1£fsAEv

Dijkstra’s Algorithm Implementation

« C++ Implementation of Dijkstra’s algorithm

int main()

{

int gr‘aph[V][V] = {{@J 4, 0, 9, 0, 0, 0, 8, @})

14, 0, 8, 0, 0, 0, 0, 11, o},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, o0, 0, 9, 0, 10, 0, 0, 0O},
{0, o, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},

{8, 11, 0, @, @, 0, 1, 0, 7},
{0, @, 2, 0, 9, 0, 6, 7, 0}

}s5
dijkstra(graph, 0);

return 0;

https://ide.geeksforgeeks.org/jM5ZlfsAEv

Bellman-Ford Algorithm

« Works for negative weights (unlike Dijkstra’s Algorithm)
« Detects a negative cycle if any exists
* Finds shortest simple path if no negative cycle exists

 If graph G = (V,E) contains negative-weight cycle, then some shortest paths may
not exist

Bellman-Ford Algorithm Pseudocode

forallvedcG // G the graph G=(V,E)
distancel[v] = «
previous[v] = @
distancel[S] =0
forallvedcG
forall (w,v) € G // (u,v) an edge
tempDistance = distance(u) + w(u,Vv)
if tempDistance < distance(v)
distance(v) = tempDistance
previous(v) = u
forall (w,v) €G
if distance(u) + w(u,v) < distance(v)
error: negative cycle exists
return distance[], previous|]

Thank you

