
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Dijkstra's Algorithm for Shortest Paths



Shortest Paths on Graphs: Dijkstra

• A Formal Definition: Dijkstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

Graph geodesic: a shortest path

between two graph vertices (u,v) of a

graph



Shortest Paths on Graphs: Dijkstra

• A Formal Definition: Dijkstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

• The worst-case running time for the Djikstra algorithm on a graph with 𝑛 nodes and 𝑚
edges is 𝑂(𝑛2) because it allows for directed cycles.



Shortest Paths on Graphs: Dijkstra

• A Formal Definition: Dijkstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

• The worst-case running time for the Djikstra algorithm on a graph with 𝑛 nodes and 𝑚
edges is 𝑂(𝑛2) because it allows for directed cycles.

• It even finds the shortest paths from a source node s to all other nodes in the graph.



Shortest Paths on Graphs: Dijkstra

• A Formal Definition: Dijkstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

• The worst-case running time for the Djikstra algorithm on a graph with 𝑛 nodes and 𝑚
edges is 𝑂(𝑛2) because it allows for directed cycles.

• It even finds the shortest paths from a source node s to all other nodes in the graph.

• This is basically 𝑂(𝑛2) for node selection and 𝑂(𝑚) for distance updates.



Shortest Paths on Graphs: Dijkstra

• A Formal Definition: Dijkstra’s algorithm is an algorithm for finding a graph geodesic, i.e.,
the shortest path between two graph vertices in a graph. It functions by constructing a
shortest-path tree from the initial vertex to every other vertex in the graph.

• The worst-case running time for the Djikstra algorithm on a graph with 𝑛 nodes and 𝑚
edges is 𝑂(𝑛2) because it allows for directed cycles.

• It even finds the shortest paths from a source node s to all other nodes in the graph.

• This is basically 𝑂(𝑛2) for node selection and 𝑂(𝑚) for distance updates.

• While 𝑂(𝑛2) is the best possible complexity for dense graphs, the complexity can be
improved significantly for sparse graphs.



How do we get to the airport? 



Single-Source Shortest Path Problem

• The problem of finding shortest paths from a source vertex 𝑣 to all other vertices in the
graph.

• Weighted graph 𝐺 = (𝑉, 𝐸)

• Source vertex 𝑠 ∈ 𝑉 to all vertices 𝑣 ∈ 𝑉

By Shiyu Ji - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=54537901

https://commons.wikimedia.org/w/index.php?curid=54537901


Dijkstra’s Algorithm

• Solution to the single-source shortest path problem in graph theory

• Both directed and undirected graphs

• All edges must have nonnegative weights

• Graph must be connected



Dijkstra’s Algorithm Pseudocode

𝑑𝑖𝑠𝑡[𝑠] = 0 // distance to source vertex is zero

for all 𝑣 ∈ 𝑉 − {𝑠}

do 𝑑𝑖𝑠𝑡[𝑣] = ∞ // set all other vertices to infinity

𝑆 = ∅ // S, the set of visited vertices is initially empty

𝑄 = V // Q, the queue initially contains all vertices

while 𝑄 ≠ ∅ // while the queue is not empty

do 𝑢 = 𝒎𝒊𝒏𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑄, 𝑑𝑖𝑠𝑡) // select the element of Q with the min distance

𝑆 = 𝑆 ∪ {𝑢} // add u to list of visited vertices

for all 𝑣 ∈ 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔(𝑢)

do if 𝑑𝑖𝑠𝑡(𝑣) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑤(𝑢, 𝑣) // if new shortest path found

then 𝑑(𝑣) = 𝑑(𝑢) + 𝑤(𝑢, 𝑣) // set new value of shortest path

return 𝑑𝑖𝑠𝑡



Output of Dijkstra’s Algorithm

• Original algorithm outputs the value of the shortest path not the path itself

• With slight modification we can obtain the path also



Why it works 

• Lemma 1: Optimal Substructure

• The subpath of any shortest path is itself a shortest path

• Lemma 2: Triangle Inequality

• If δ(u,v) is the shortest path length between any u and v, then δ(u,v) ≤ δ(u,v)+δ(x,v)



Why do we use Dijkstra’s Algorithm

• Algorithms for calculating the shortest path from source to sink about as
computationally expensive as calculating shortest paths from source to any vertex.



Dijkstra’s Algorithm Implementation
• C++ Implementation of Dijkstra’s algorithm
// A C++ program for Dijkstra's single source shortest path algorithm. 

// The program is for adjacency matrix representation of the graph 

#include <stdio.h> 

#include <limits.h> 

// Number of vertices in the graph 

#define V 9 

// A utility function to find the vertex with minimum distance value, from 

// the set of vertices not yet included in shortest path tree 

int minDistance(int dist[], bool sptSet[]) 

{ 

// Initialize min value 

int min = INT_MAX, min_index; 

for (int v = 0; v < V; v++) 

if (sptSet[v] == false && dist[v] <= min) 

min = dist[v], min_index = v; 

return min_index; 

} 

Find vertex with minimum

distance value from the 

set of vertices not in the path 

tree



Dijkstra’s Algorithm Implementation
• C++ Implementation of Dijkstra’s algorithm
// A utility function to print the constructed distance array 

int printSolution(int dist[], int n) 

{ 

printf("Vertex Distance from Source\n"); 

for (int i = 0; i < V; i++) 

printf("%d tt %d\n", i, dist[i]); 

} 



Dijkstra’s Algorithm Implementation
• C++ Implementation of Dijkstra’s algorithm
// Function that implements Dijkstra's single source shortest path algorithm 

// for a graph represented using adjacency matrix representation 

void dijkstra(int graph[V][V], int src) 

{ 

int dist[V]; // The output array. dist[i] will hold the shortest 

// distance from src to i

bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest 

// path tree or shortest distance from src to i is finalized 

// Initialize all distances as INFINITE and stpSet[] as false 

for (int i = 0; i < V; i++) 

dist[i] = INT_MAX, sptSet[i] = false; 

// Distance of source vertex from itself is always 0 

dist[src] = 0; 

// Find shortest path for all vertices 

for (int count = 0; count < V-1; count++) 

{ 

// Pick the minimum distance vertex from the set of vertices not 

// yet processed. u is always equal to src in the first iteration. 

int u = minDistance(dist, sptSet); 

output array

true if vertex in the path

Initialize

Pick minimum dist vertex



Dijkstra’s Algorithm Implementation
• C++ Implementation of Dijkstra’s algorithm

// Mark the picked vertex as processed 

sptSet[u] = true; 

// Update dist value of the adjacent vertices of the picked vertex. 

for (int v = 0; v < V; v++) 

// Update dist[v] only if is not in sptSet, there is an edge from 

// u to v, and total weight of path from src to v through u is 

// smaller than current value of dist[v] 

if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u]+graph[u][v] < dist[v]) 

dist[v] = dist[u] + graph[u][v]; 

} 

// print the constructed distance array 

printSolution(dist, V); 

} 

mark picked as visited

distances updated for 

vertices not visited, u-v 

edge exists and weight 

decreases



Dijkstra’s Algorithm Implementation
• C++ Implementation of Dijkstra’s algorithm
// driver program to test above function 

int main() 

{ 

/* Let us create the example graph discussed above */

int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0}, 

{4, 0, 8, 0, 0, 0, 0, 11, 0}, 

{0, 8, 0, 7, 0, 4, 0, 0, 2}, 

{0, 0, 7, 0, 9, 14, 0, 0, 0}, 

{0, 0, 0, 9, 0, 10, 0, 0, 0}, 

{0, 0, 4, 14, 10, 0, 2, 0, 0}, 

{0, 0, 0, 0, 0, 2, 0, 1, 6}, 

{8, 11, 0, 0, 0, 0, 1, 0, 7}, 

{0, 0, 2, 0, 0, 0, 6, 7, 0} 

}; 

dijkstra(graph, 0); 

return 0; 

} 

https://ide.geeksforgeeks.org/jM5ZlfsAEv

https://ide.geeksforgeeks.org/jM5ZlfsAEv


Bellman-Ford Algorithm

• Works for negative weights (unlike Dijkstra’s Algorithm)

• Detects a negative cycle if any exists

• Finds shortest simple path if no negative cycle exists

• If graph 𝐺 = (𝑉, 𝐸) contains negative-weight cycle, then some shortest paths may
not exist



Bellman-Ford Algorithm Pseudocode

for all 𝑣 ∈ 𝐺 // G the graph G=(V,E)

distance[v] = ∞

previous[v] = ∅

distance[S] = 0

for all 𝑣 ∈ 𝐺

for all (𝑢, 𝑣) ∈ 𝐺 // (u,v) an edge

tempDistance = distance(u) + w(u,v)

if tempDistance < distance(v)

distance(v) = tempDistance

previous(v) = u

for all (𝑢, 𝑣) ∈ 𝐺

if distance(u) + w(u,v) < distance(v)

error: negative cycle exists

return distance[], previous[]



Thank you


