
Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

Introductory Examples and Notes on C++ Smart Pointers

Smart pointers are used to make sure that an object is deleted if it is no longer used

(referenced).

Consider the simple example

void my_func()

{

 int* valuePtr = new int(15);

 int x = 45;

 // ...

 if (x == 45)

 return; // here we have a memory leak, valuePtr is not deleted

 // ...

 delete valuePtr;

}

int main()

{

}

The same example using the unique_ptr<> template takes the form:

#include <memory>

void my_func()

{

 std::unique_ptr<int> valuePtr(new int(15));

 int x = 45;

 // ...

 if (x == 45)

 return; // no memory leak anymore!

 // ...

}

int main()

{

}

The unique_ptr<> template holds a pointer to an object and deletes this object when

the unique_ptr<> object is deleted. This means that in the example above, it does not

matter if the function scope is left through the return statement, at the end of the function

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/memory/unique_ptr

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

or through an exception: The unique_ptr<> destructor is always called and therefore

the object (int in this example) is always deleted.

The following three smart pointer templates are available

unique_ptr

template<

 class T,

 class Deleter = std::default_delete<T>

> class unique_ptr;

template <

 class T,

 class Deleter

> class unique_ptr<T[], Deleter>;

std::unique_ptr is a smart pointer that owns and manages another object through a

pointer and disposes of that object when the unique_ptr goes out of scope.

The object is disposed of using the associated deleter when either of the following

happens:

 the managing unique_ptr object is destroyed

 the managing unique_ptr object is assigned another pointer via operator= or

reset().

The object is disposed of using a potentially user-supplied deleter by calling

get_deleter()(ptr). The default deleter uses the delete operator, which destroys the

object and deallocates the memory.

A unique_ptr may alternatively own no object, in which case it is called empty.

There are two versions of std::unique_ptr:

1. Manages a single object (e.g. allocated with new)

2. Manages a dynamically-allocated array of objects (e.g. allocated with new[])

As the name implies, it makes sure that only exactly one copy of an object exists. Can be

used as in the example above for handling dynamically allocated objects in a restricted

scope.

A unique pointer can be initiated with a pointer upon creation

std::unique_ptr<int> valuePtr(new int(47));

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/memory/default_delete
http://en.cppreference.com/w/cpp/memory/unique_ptr

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

or it can be created without a pointer and assigned one later

std::unique_ptr<int> valuePtr;

valuePtr.reset(new int(47));

Note: In this second case, if the unique_ptr<> already holds a pointer to an existing

object, this object is deleted first and then the new pointer is stored.

Afterwards, an object managed by a unique_ptr<> can be accessed just like when

you would use a raw pointer.

std::unique_ptr<std::string> strPtr(new std::string); strPtr->assign("Hello

world");

The unique_ptr<> does not support copying. If you try to copy a unique_ptr<>, you

will get compiler errors. However, it supports move semantics, where the pointer is moved

from one unique_ptr<> to another, which invalidates the first unique_ptr<>.

See the following example:

#include <iostream>

#include <memory>

#include <utility>

int main()

{

 std::unique_ptr<int> valuePtr(new int(15));

 std::unique_ptr<int> valuePtrNow(std::move(valuePtr));

 std::cout << "valuePtrNow = " << *valuePtrNow << '\n';

 std::cout << "Has valuePtr an associated object? "

 << std::boolalpha

 << static_cast<bool>(valuePtr) << '\n';

}

The output is:

valuePtrNow = 15

Has valuePtr an associated object? false

shared_ptr

template< class T > class shared_ptr;

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/string/basic_string
http://en.cppreference.com/w/cpp/string/basic_string
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/utility/move
http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/io/manip/boolalpha

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

std::shared_ptr is a smart pointer that retains shared ownership of an object through

a pointer. Several shared_ptr objects may own the same object. The object is destroyed

and its memory deallocated when either of the following happens:

 the last remaining shared_ptr owning the object is destroyed;

 the last remaining shared_ptr owning the object is assigned another pointer via

operator= or reset().

The object is destroyed using delete-expression or a custom deleter that is supplied to

shared_ptr during construction.

A shared_ptr can share ownership of an object while storing a pointer to another

object. This feature can be used to point to member objects while owning the object

they belong to. The stored pointer is the one accessed by get(), the dereference and

the comparison operators. The managed pointer is the one passed to the deleter when

use count reaches zero.

A shared_ptr may also own no objects, in which case it is called empty (an empty

shared_ptr may have a non-null stored pointer if the aliasing constructor was used to

create it).

All member functions (including copy constructor and copy assignment) can be called

by multiple threads on different instances of shared_ptr without additional

synchronization even if these instances are copies and share ownership of the same

object. If multiple threads of execution access the same shared_ptr without

synchronization and any of those accesses uses a non-const member function of

shared_ptr then a data race will occur; the shared_ptr overloads of atomic functions

can be used to prevent the data race.

The shared_pointer is a reference counting smart pointer that can be used to store and

pass a reference beyond the scope of a function. This is particularly useful in the context

of Object Oriented Programming, to store a pointer as a member variable and return it

to access the referenced value outside the scope of the class. Consider the following

example:

#include <memory>

class Foo

{

 public void doSomething();

};

class Bar

{

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

private:

 std::shared_ptr<Foo> pFoo;

public:

 Bar()

 {

 pFoo = std::shared_ptr<Foo>(new Foo());

 }

 std::shared_ptr<Foo> getFoo()

 {

 return pFoo;

 }

};

When an object of the Bar class is created it creates a new object of the Foo class, which

is stored in pFoo. To Access pFoo we can call Bar::getFoo which returns a

std::shared_ptr to the Foo object created in the Bar constructor. Internally, a copy of

the std::shared_ptr object is created and returned. The copy constructor of

std::shared_ptr copies the internal pointer to the Foo object and increases the

reference count. This would, for example, happen in the following example:

void SomeAction()

{

 Bar* pBar = new Bar(); //with the Bar object, a new Foo is created and

stored

 //reference counter = 1

 std::shared_ptr<Foo> pFoo = pBar->getFoo(); //a copy of the shared pointer

is created

 //reference counter = 2

 pFoo->doSomething();

 delete pBar; //with pBar the private pFoo is destroyed

 //reference counter = 1

 return; //with the return the local pFoo is destroyed automatically

 //reference counter = 0

 //internally the std::shared_ptr destroys the reference to the Foo object

}

So there's no need for Bar to care about deleting pFoo, which increases memory

management severely.

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

void SomeOtherAction(std::shared_ptr<Bar> pBar)

{

 std::shared_ptr<Foo> pFoo = pBar->getFoo(); //a copy of the shared pointer

is created

 //reference counter = 2

 pFoo->doSomething();

 return; //local pFoo is destroyed

 //reference counter = 1

}

When the function returns, pBar is deleted, but there is still a copy of the

std::shared_ptr outside the scope of the function, therefor the internal Bar object will

not be destroyed, which sustains the reference to the Foo object, which is in turn not

destroyed either. The usage of smart_ptr allows us to easily pass and return references

to objects without running into memory leaks or invalid attempts to access deleted

references. They are thus a cornerstone of modern memory management.

weak_ptr

template< class T > class weak_ptr;

std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an

object that is managed by std::shared_ptr. It must be converted to

std::shared_ptr in order to access the referenced object.

std::weak_ptr models temporary ownership: when an object needs to be accessed

only if it exists, and it may be deleted at any time by someone else, std::weak_ptr is

used to track the object, and it is converted to std::shared_ptr to assume temporary

ownership. If the original std::shared_ptr is destroyed at this time, the object's lifetime

is extended until the temporary std::shared_ptr is destroyed as well.

In addition, std::weak_ptr is used to break circular references of std::shared_ptr.

Like std::shared_ptr, a typical implementation of weak_ptr stores two pointers:

 a pointer to the control block; and

 the stored pointer of the shared_ptr it was constructed from.

A separate stored pointer is necessary to ensure that converting a shared_ptr to

weak_ptr and then back works correctly, even for aliased shared_ptrs. It is not possible

to access the stored pointer in a weak_ptr without locking it into a shared_ptr.

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

Based on:

https://en.cppreference.com/book/intro/smart_pointers and https://en.cppreference.com

An example that demonstrates how lock is used to ensure validity of the pointer is shown

below:

#include <iostream>

#include <memory>

std::weak_ptr<int> gw;

void observe()

{

 std::cout << "use_count == " << gw.use_count() << ": ";

 if (auto spt = gw.lock()) { // Has to be copied into a shared_ptr before usage

 std::cout << *spt << "\n";

 }

 else {

 std::cout << "gw is expired\n";

 }

}

int main()

{

 {

 auto sp = std::make_shared<int>(42);

 gw = sp;

 observe();

 }

 observe();

}

The output is:

use_count == 1: 42

use_count == 0: gw is expired

https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

