Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Robot Perception
    • Robot Learning
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Underwater Autonomy
    • Intelligent Mobility
    • Robotics for Nuclear Sites
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Project & Assignments
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact

SENTIENT

This project envisions the research and development of "SENTIENT: Science of resiliENt auTonomy In pErceptually-degraded eNvironmenTs" as the new theory, methodological tools, and field experiments-verified system realization that give rise to a new generation of cognizant small (3kg) and micro (0.25kg) aerial robots capable of resilient autonomy, versatile exploration and inspection inside challenging, GPS-denied, visually-degraded, geometrically complex and dynamic environments such as vessel ballast tanks, cargo tanks, and oil & gas facilities. Motivated by the core hypothesis that there exists a comprehensive science of resilient autonomy for aerial robots seamlessly operating in challenging, high-risk and degraded environments, the envisioned research will be holistically organized around three cross-cutting objectives. In particular, SENTIENT will research on a) designing resilient collision-tolerant aerial robots, b) redundant, resourceful and robust robotic perception for autonomous localization and scene understanding through the fusion of diverse sensing technologies, and c) cognizant informative path planning and machine learning-based navigation.

Capable of resilient autonomy in challenging settings, the SENTIENT robots are driven by important needs of the maritime and energy industry. The project partnership involves the collaboration of NTNU with Scout Drone Inspection (SDI), DNV GL, ALTERA and Equinor, while extensive real-life evaluations in ship ballast tanks, cargo tanks, and oil & gas installations are planned. Capitalizing on the importance of the scientific and application domain, the team has also established collaboration with NASA JPL, UC Berkeley and ETH Zurich. Overall, SENTIENT pushes the frontier in scientific research in robotics and artificial intelligence, while simultaneously building vital competence in industry-needed domains paving the way to offer new opportunities and societal benefits both at short- and long-term horizons.
Proudly powered by Weebly