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Why using a Kalman Filter?

 Sensor readings are inaccurate, uncertain and noisy.

 Robot models are uncertain.

 In many cases, sensor and process uncertainty can be modeled with simply

statistical assumptions and eventually utilize Gaussian models.

 The Kalman Filter is “as is” applicable to Linear Systems with Gaussian Noise

but its extensions can deal with much more complicated cases.

 A “must-know” if one is to work on anything related with robotics and

navigation systems (and not only).



What is a Kalman Filter?

 A Kalman Filter is an optimal estimator – i.e. it infers parameters of interest

from indirect, inaccurate and uncertain observations. It is recursive so that

new measurements can be processed as they arrive.

 Optimality in what sense? If all noise is Gaussian, the Kalman Filter minimizes

the mean square error of the estimated parameters.

 What if the noise is not Gaussian? Given only the mean and standard

deviation of noise, the Kalman Filter is the best linear estimator. Non-linear

estimators may be better.



Why is Kalman Filtering so popular?

 Good results in practice due to optimality and structure

 Convenient form for online real-time processing

 Easy to formulate and implement given a basic understanding

 Measurement equations need not to be inverted

 It is highly versatile and used for:

 Estimation

 Filtering

 Prediction

 Fusion



LAB mini courses

Subsection 2: Recap on Probability and Statistics

Estimation - 01 – Kalman Filter



Probability theory

 Random experiment that can produce a number of outcomes, e.g. a rolling

dice.

 Sample space, e.g.: {1,2,3,4,5,6}

 Event A is subset of outcomes, e.g. {1,3,5}

 Probability P(A), e.g. P(A)=0.5



Axioms of Probability theory









Discrete Random Variables

 X denotes a random variable

 X can take on a countable number of values in {x1,x2,…,xn}

 P(X=xi) is the probability that the random variable X takes on value xi

 P(.) is called the probability mass function

 Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,

kitchen



Continuous Random Variables

 X takes on continuous values.

 P(X=x) or P(x) is called the probability density function (PDF).

 Example:

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005



Proper Distributions Sum To One

 Discrete Case

 Continuous Case



Joint and Conditional Probabilities



 If X and Y are independent then:

 Is the probability of x given y

 If X and Y are independent then:



Conditional Independence

 Definition of conditional independence:

 Equivalent to:

 Note: this does not necessarily mean that:



Marginalization

 Discrete case:

 Continuous case:



Marginalization example



Expected value of a Random Variable

 Discrete case:

 Continuous case:

 The expected value is the weighted average of all values a random variable

can take on.

 Expectation is a linear operator:



Covariance of a Random Variable

 Measures the square expected deviation from the mean:



Estimation from Data

 Observations:

 Sample Mean:

 Sample Covariance:



Maximum Likelihood

 Maximum likelihood, also called the maximum likelihood method, is the

procedure of finding the value of one or more parameters for a given statistic

which makes the known likelihood distribution a maximum.

 For a measurement signal 𝑦 and the state to be inferred ො𝑥, assuming that the

additive random noise is Gaussian distributed with a standard deviation 𝜎𝑘 gives:
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Markov Assumption

 Observations depend only on current state

 Current state depends only on previous state and current action



Markov Chain

 A Markov Chain is a stochastic process where, given the present state, the

past and the future states are independent.



Underlying Assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors



Bayes Filter

 Given

 Sequence of observations and actions:

 Sensor model:

 Action model:

 Prior probability of the system state:

 Desired

 Estimate of the state of the dynamic system:

 Posterior of the state is also called belief:



Bayes Filter Algorithm

 For each time step, do:

 Apply motion model:

 Apply sensor model:

 η is a normalization factor to ensure that the probability is maximum 1.



Notes

 Bayes filters also work on continuous state spaces (replace sum by integral).

 Bayes filter also works when actions and observations are asynchronous.
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Introduction

 The Kalman Filter (KF) has long been regarded as the optimal solution to

many tracking and data prediction tasks.



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian



Linear Process Model
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Linear Process Model

 Consider a time-discrete stochastic process
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the controls



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction



Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n

 Optimal for linear Gaussian systems

 But most robots are nonlinear! This is why in practice we use Extended Kalman

Filters and other approaches.
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KF State Space Derivation

 Assume that we want to know the value of a variable within a process of the form:

 𝑥𝑘: the state vector of the process at time k (nx1)

 Φ: is the state transition matrix of the process from the state k to k+1 – assumed stationary

over time – (nxm)

 𝑤𝑘: associated white noise process with known covariance (nx1)

 Observation on this variable can be modelled in the form:

 𝑧𝑘: actual measurement of 𝑥 at time k (mx1)

 H: noiseless connection between the state vector and the measurement vector – assumed

stationary over time – (mxn)

 𝑣𝑘: white noise process with known covariance and zero cross correlation with 𝑤𝑘 (mx1)

Eq.1

Eq.2



KF State Space Derivation

 For the minimization of the Mean Square Error (MSE) to yield the optimal filter, it must

be possible to correctly model the system errors using Gaussian distributions. The

covariances of the two noise models are assumed stationary over time and given by:

 The mean squared error formulation gives:

→

 𝑃𝑘: is the error covariance matrix at time k (nxn)

 Let the prior estimate of ො𝑥𝑘 be ො𝑥𝑘
′ (gained by knowledge of the system). We can

write an update equation for the new estimate, combining the old estimate with

measurement data:

 𝐾𝑘: the Kalman Gain

 is the innovation or measurement residual

Eq.3

Eq.4

Eq.5

Eq.6

Eq.7

Covariances Formula

Error Covariances Formula



KF State Space Derivation

 Through substitution of Eq.2 to Eq.6:

 Through substitution of Eq.8 to Eq.5:

 The difference ො𝑥𝑘 − ො𝑥𝑘
′ is the error of the prior estimate. As this is uncorrelated with the

measurement noise, the expectation may be rewritten as:

 Through substitution of Eq.4 and Eq.5 to Eq.9:

 𝑃𝑘
′ is the prior estimate of 𝑃𝑘

Eq.8

Eq.9

Eq.10

Eq.11Error Covariances Update



KF State Space Derivation

 Eq.11 is the error covariance update equation. The diagonal of the covariance

matrix contains the mean squared errors:

 The sum of the diagonal elements of a matrix is its trace. In the case of the error covariance

matrix, the trace is the sum of the mean squared errors. Therefore, the mean squared error

may be minimized by minimizing the trace of 𝑷𝒌 which in turn will minimize the trace of 𝑷𝒌𝒌.

 The trace of 𝑃𝑘 is first differentiated with respect to 𝐾𝑘 and the result set to zero in order to

find the conditions of this minimum.

 Expansion of Eq.11 gives:

 As the trace of a matrix is equal to the trace of its transpose:

 𝑇[𝑃𝑘] is the trace of the matrix 𝑃𝑘

 Differentiating with respect to 𝐾𝑘 gives:

Eq.12

Eq.13

Eq.15

Eq.14



KF State Space Derivation

 Setting Eq.14 to zero and re-arranging gives:

 And solving for 𝐾𝑘:

 Which is the Kalman Gain Equation

 The innovation 𝑖𝑘 (Eq.7) has an associated measurement prediction covariance:

 Finally, through substitution of Eq.17 into Eq.13:

 Eq. 19 is the update equation for the error covariance matrix with optimal gain. The three

equations Eq.6, Eq.17 and Eq.19 develop an estimate for 𝑥𝑘. State project is achieved using:

Eq.16

Eq.17

Eq.18

Eq.19

Eq.20

Kalman Gain

Error covariance matrix 

update with optimal gain



KF State Space Derivation

 To complete the recursion it is necessary to find an equation which projects the error

covariance matrix into the next time interval, k+1. This is achieved by first forming an

expression for the prior error:

 Extending Eq.5 to k+1:

 Note that 𝑒𝑘 and 𝑤𝑘 have zero cross-correlation because the noise 𝑤𝑘 accumulates

between k and k+1, whereas the error 𝑒𝑘 is the error up until time k. Thus:

 This completes the recursive filter.

Eq.21

Eq.22

Eq.23



KF State Space Derivation

Description Equation

Kalman Gain

Update/Correct Estimate

Update/Correct Covariance

Project/Predict into k+1



Model Covariance Update

 The model parameter covariance has been considered in the its inverted form

where it is known as the information matrix. It is possible to formulate an alternative

update equation for the covariance matrix using standard error propagation:

 It can be shown that the covariance updates of Eq.22 and Eq.19 are equivalent. This

may be achived by using the identity 𝑃𝑘 × 𝑃𝑘
−1 = 𝐼. The original, Eq.19 and alternative

Eq.22 forms of the covariance update equations are:

 Therefore:

 Substitution for 𝐾𝑘 gives:

Eq.22

Eq.23

Eq.24

Eq.25
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Python tools for probability computations

 Mean

 Median

 Variance

 Standard deviation and Variance



Python tools for probability computations

 Gaussians

Probability 

Density 

Function



Python tools for probability computations

 Gaussian Distributions

 A Gaussian is a Probability Density Function defined by its mean parameter (μ) and its

variance (σ2) as follows:



Python tools for probability computations

 Gaussian Distributions



Python tools for probability computations

 Gaussian Distributions

 Calculation of the area under the curve (cumulative distribution function)



Python tools for probability computations

 The Variance and Belief

 Small standard deviation indicates better confidence.



Python tools for probability computations

 The 3σ rule

 Within 3σ around the mean, 99.7% of all the cumulative probability is covered.



Designing a simple Kalman Filter in Python

 Assume we track an object over an axis.

 Consider that we now believe it is at 10m with a significant uncertainty.

 Can we get many measurements to robustify our estimate about the position of the robot?



Designing a simple Kalman Filter in Python

 So let’s get many measurements…

 Getting these measurements as a batch and computing the mean indicates that the

position is 10. Can we do that better, online, real-time, recursively?



Designing a simple Kalman Filter in Python

 Tracking with Gaussian Probabilities

 To represent where the object is considered to be per measurement we write the Gaussian:

 And we can use every new step of measurement update to conduct a prediction and an

update step:

 where are “unknown” (for now) operators that can perform the predict and

update steps.

Predict

Update



Designing a simple Kalman Filter in Python

 Tracking with Gaussian Probabilities: Prediction

 We need to represent the change in motion as a Gaussian. Therefore, let 𝑓𝑥 be the “change

in the motion of the object”. So the new position predicted will be:

 Which is suitable because the sum of two Gaussians, is also Gaussian with parameters:

 This allows us to write the update step as:



Designing a simple Kalman Filter in Python

 Tracking with Gaussian Probabilities: Update

 The update step will have to work on the current prior and the likelihood to derive the next

estimate. This can be written as:

 The prior is represented as a Gaussian. At the same time, the likelihood is the probability of

the measurement given the current state – which is also a Gaussian. Multiplication of two

Gaussians is a more complex operation taking the form:



Designing a simple Kalman Filter in Python

 Tracking with Gaussian Probabilities: Update

 Which then is coded as:



Designing a simple Kalman Filter in Python



 Gaussian multiplication affects both the mean (now a function of the previous mean values

and the variances) as well as the variances (now a function of the previous variances).

Multiplying Gaussians
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Designing a simple Kalman Filter in Python
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Designing a simple Kalman Filter in Python



 Gaussian multiplication affects both the mean (now a function of the previous mean values

and the variances) as well as the variances (now a function of the previous variances).

Multiplying Gaussians



Designing a simple Kalman Filter in Python



 Gaussian multiplication affects both the mean (now a function of the previous mean values

and the variances) as well as the variances (now a function of the previous variances).

Multiplying Gaussians



Designing a simple Kalman Filter in Python
A First Kalman Filter 

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



A First Kalman Filter

Implementation



Designing a simple Kalman Filter in Python
Its results…



Designing a simple Kalman Filter in Python
The Actual Kalman 

Filter Steps



Designing a simple Kalman Filter in Python



 To understand better how the filter works let’s go back and remember that the posterior is

computed as the likelihood times the prior.

 Therefore the mean of the posterior is:

 or equivalently:

 As shown we are in fact scaling the measurements and the prior by probabilistic weights:

 Let us introduce the Kalman Gain as:

 Then:

What is happening: The Kalman Gain



Designing a simple Kalman Filter in Python



 A visualization of how the Kalman Filter weighting process works:

What is happening: The Kalman Gain



Designing a simple Kalman Filter in Python



 Then the update function of the filter can be written as:

What is happening: The Kalman Gain



Multivariate Kalman Filter

 In fact we implement a discretized continuous-time kinematic filter and they are

applicable to Newtonian systems.

 For such systems, and under constant velocity assumption (applicable to an iteration):

 Note that for many systems/processes, state update integration is not that simple.



Multivariate Kalman Filter



Initialization

 Initialize the state of the filter

 Initialize our belief in the state

Predict

 Use process model to predict the state at the next time step

 Adjust belief to account for the uncertainty in the prediction

Update/Correct

 Get a measurement and associated belief about its accuracy

 Compute residual between estimated state and measurement

 Compute scaling factor based on whether the measurement or prediction is more accurate

 Set state between the prediction and measurement based on scaling factor

 Update belief in the state based on how certain we are in the measurement.

Kalman Filter Algorithm



Multivariate Kalman Filter



Predict

 𝑿,𝑷 are the state mean and covariance. They correspond to 𝑥 and 𝜎2

 𝑭,𝑸 are the process mean and covariance. They correspond to 𝑓𝑥 and 𝜎𝑓𝑥
2

 𝑩 and 𝒖 are the control allocation matrix and the input vector.

Kalman Filter Algorithm



Multivariate Kalman Filter



Update/Correction

 𝑯 is the measurement function.

 𝒛, 𝑹 are the measurement mean and noise covariance.

 𝒚,𝑲 are the residual and Kalman gain.

 The details will be different than the univariate filter because these are vectors and matrices, but the concepts are the same:

 Use a Gaussian to represent our estimate of the state and error

 Use a Gaussian to represent the measurement and its error

 Use a Gaussian to represent the process model

 Use the process model to predict the next state (the prior)

 Form an estimate part way between the measurement and the prior

Kalman Filter Algorithm



Multivariate Kalman Filter



 For the multivariate case we will introduce “hidden” (velocity) variables. Simulation of the

motion:

 Then load the Kalman prediction, update/correction functions:

Predict Step



Multivariate Kalman Filter



 For this problem we are tracking both the position and the velocity (“hidden” variable). This

requires to use a multivariate Gaussian: 𝒙 and 𝑷.

 Note that variables might be observed (a sensor measures a relevant value) or hidden. Velocity does

not have to be hidden always. This was simply an assumption for the example. The state vector

contains both these values, although the outputs vector might only contain some of them.

Design State Covariance

 The covariance in a multivariate Kalman Filter has the role of the variance in a univariate KF.

 The Covariance Matrix is structured as follows:

 Covariance Matrix diagonal terms: variances of each variable.

 Covariance Matrix off-diagonal terms: covariances among the variables.

 example:

Predict Step



Multivariate Kalman Filter



Design the Process Model

 The transition model (this is what is computed within the predict function):

 The filter predicts how the state will be as well as the covariance matrix.

Predict Step



Multivariate Kalman Filter



Design the Process Model

 Let’s have a look at the covariance matrix:

off-diagonal terms!

Predict Step



Multivariate Kalman Filter



Design the Process Noise

 In general the noise is added (for LTI systems as):

 In general refer to the previous sections on how it is modeled. For the moment let’s stick on:

Predict Step



Multivariate Kalman Filter



Design the Control Function

 The complete –before noise- representation will be:

 Or in standard continuous time notation:

 Including noise:

 Overall Kalman Filter Prediction step

 For this example:

Predict Step



Multivariate Kalman Filter



 Summary of Design parameters:

 𝑿,𝑷: the state and covariance

 𝑭,𝑸: the process model and noise covariance

 𝑩,𝒖: if present, the control matrix and input vector

Predict Step



Multivariate Kalman Filter



Design the Measurement Function

 Form of the measurement function:

Update/Correction Step



Multivariate Kalman Filter



Design the Measurement

 The measurement has mean 𝒛 and covariance 𝑹.

 It corresponds to the covariance matrix on the measurement noise elements, their own variances

and covariances.

Update/Correction Step



Multivariate Kalman Filter



 Coding Form of the Kalman Filter update step:

Update/Correction Step



Multivariate Kalman Filter



 Write the filter

Implementing the Kalman Filter



Multivariate Kalman Filter



 Create the filter

Implementing the Kalman Filter



Multivariate Kalman Filter



 Run the filter

Implementing the Kalman Filter



Multivariate Kalman Filter



 Results

Implementing the Kalman Filter



Multivariate Kalman Filter



 Results

Implementing the Kalman Filter



Multivariate Kalman Filter



 Results :: Plot the Gaussians

Implementing the Kalman Filter



Multivariate Kalman Filter

 In fact we implement a discretized continuous-time kinematic filter and they are

applicable to Newtonian systems.

 For such systems, and under constant velocity assumption (applicable to an iteration):

 Note that for many systems/processes, state update integration is not that simple.



Thank you! 
Please ask your question!


