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Subsection 1: A brief intfroduction




Why using a Kalman Filtere

Sensor readings are inaccurate, uncertain and noisy.

Robot models are uncertain.

In many cases, sensor and process uncertainty can be modeled with simply
statistical assumptions and eventually utilize Gaussian models.

e Kalman Filter is “as is” applicable to Linear Systems with Gaussian Noise
but its extensions can deal with much more complicated cases.

A “must-know” if one is to work on anything related with robotics and
navigation systems (and not only).



What is a Kalman Filter?e

= A Kalman Filter is an optimal estimator — i.e. it infers parameters of interest
from indirect, inaccurate and uncertain observations. It is recursive so that
new measurements can be processed as they arrive.

= Optimality in what sense? If all noise is Gaussian, the Kalman Filter minimizes
the mean square error of the estimated parameters.

= What if the noise is not Gaussian? Given only the mean and standard
deviation of noise, the Kalman Filter is the best linear estimator. Non-linear
estimators may be better.




Why is Kalman Filtering so populare

Good results in practice due to optimality and structure
Convenient form for online real-time processing

Easy to formulate and implement given a basic understanding
Measurement equations need not to be inverted

t is highly versatile and used for:

= Estimation

= Filtering
= Prediction

= Fysion
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Subsection 2: Recap on Probability and Statistics




Probabillity theory

Random experiment that can produce a number of outcomes, e.g. a rolling
dice.

Sample space, e.g.: {1,2,3,4,5,6}

Event A is subset of outcomes, e.g. {1,3,5}

robability P(A), e.g. P(A)=0.5




Axioms of Probability theory
-0< PA) <1
-PQ)=1, P(0)=0
- P(AUB)=P(A)+ P(B)— P(AN B)




Discrete Random Variables

» X denotes a random variable
= X can take on a countable number of values in {x;,X,,...,X.}
» P(X=x) is the probability that the random variable X takes on value x;

= P()is called the probability mass function

» Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,
kitchen




Continuous Random Variables

» X takes on continuous values.

» P(X=x) or P(x) is called the probability density function (PDF).

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005

= Example:

p(x)




Proper Distributions Sum To One

= Discrete Case Z P(CC) — 1

= /Continuous Case /p(l‘)dl’ = 1




Joint and Conditional Probabillities
- p(X =2, and Y =y) = P(x,y)

» |f X and Y are independent then:
P(z,y) = P(z)P(y)
= |s the probability of x giveny

P(zly)P(y) = P(z,y)

= |f X and Y are independent then:

P(zly) = P()




Conditional Independence

= Definition of condifional independence:
P(z,y|lz) = P(x|z)P(y|z)

= Equivalent to:

P(z|z) = P(zly, z)
P(y|z) = P(y|z, 2)

= Note: this does not necessarily mean that:

P(z,y) = P(z)P(y)




Marginalization
= Discrete case: P(.CC) — Z P(‘/B? y)
Y

= /Continuous case; p(ﬂ;’) — /p(m? y)dy




Marginalization example
PX)Y) | xi X1 X1 X1 P(Y) |

P(X) 1/2 1/4 1/8 1/8 1
—




Expected value of a Random Variable
= Discrete case: E’[X] — Z ZU%P(ZEJ

Continuous casezE[X] — /.”L'P(X = Jf)dﬂf

= The expected value is the weighted average of all values a random variable
can take on.

= Expectation is a linear operator:

FElaX +b] =aFE[X]|+b



Covariance of a Random Variable

= Measures the square expected deviation from the mean:

Cov[X]| = E[X — E[X]]* = E[X?] — E[X]?




Estimation from Datao

= Observations: X1, X9, ..., Xp - Rd

1
= Sample Mean: U = — E X,
n =
2

= Sample Covariance:

= S — ) (% — 1)

n—1

()




Maximum Likelihood

» Maximum likelihood, also called the maximum likelihood method, is the
procedure of finding the value of one or more parameters for a given statistic
which makes the known likelihood distribution a maximum.

= For a measurement signal y and the state to be inferred x, assuming that the
additive random noise is Gaussian distributed with a standard deviation g, gives:

(i

2 2a

P(yr, Tr) = Kye kL Y = apg + Ny
_((yk—akffk)z)

Ply ) =T, Kpe %%

1 L ~ )2
logP(y ) = = Z (Y 2;%;%) + constant
k
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Subsection 3.1: Before going to Kalman - the Bayes Filter




Markov Assumption

= Observations depend only on current state

P(Zt‘£0:tazlzt—1au1:t) — P(Zt\l“t)

= Current state depends only on previous state and current action

P(xt‘l'O:t;Zl:taul:t) — P(l’t\iﬁt—hut)




Markov Chain

= A Markov Chain is a stochastic process where, given the present state, the
past and the future states are independent.

A K?%% y




Underlying Assumptions

= Static world

= |Independent noise

= Perfect model, no approximation errors




Bayes Filter

= Given
= Seqguence of observations and actions: Zt; Ut

= Sensor model: P(Z ‘ .If)

= Action model: P(,I" ‘.If? U)

= Prior probability of the system state: P (fL‘)

= Desired
= Estimate of the state of the dynamic system: 0

= Posterior of the state is also called belief:

Bel(xy) = P(xi|uq, 21, ..., us, z¢)




Bayes Filter Algorithm

= For each time step, do:

= Apply motion model:

Bel () ZP (24|21, u) Bel(xy—q)

Tr+—1

Bel(z;) = nP(z|x:) Bel(z;)

= pis a normalization factor to ensure that the probability is maximum 1.




Notes

= Bayes filters also work on continuous state spaces (replace sum by integral).

= Bayes filter also works when actions and observations are asynchronous.
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Subsection 3.2: From Bayes to Kalman Filter




Infroduction

= The Kalman Filter (KF) has long been regarded as the opfimal solution to
many tracking and data prediction tasks.




Kalman Filter

= Univariate distribution X ~ N(u, 02)

| P() mion \

Variance (squared
standard deviation)

0
withi

J‘/ 99% of mass within 3sd \’L
X

PhY u+o u+30




Kalman Filter
= Multivariate normal distribution: X ~ N(ﬂ,? 2)
= Mean: U - Rn

= /Covariance: Z C Rnxm

= Probability density function:

p(X = X)lz N (x; u, 2)1:
s S (x = WSk 0)




Properties of Normal Distributions

= Linear tfransformation —remains Gaussian
X ~N(p,X),Y ~AX +B
=Y ~N(Ap+ B, AXAT)

» /Intersection of two Gaussians — remains Gaussian

Xl et N(“1721)7X2 NN(,—"Q; 22)

219 2 | )

TS SHLEEIES SHIED SRl ST NS She

P(X1)p(Xs) = N (




Properties of Normal Distributions

= Linear tfransformation —remains Gaussian
X ~N(p,X),Y ~AX +B
=Y ~N(Ap+ B, AXAT)

» /Intersection of two Gaussians — remains Gaussian

Xl et N(M1721)7X2 NN’(,—"Q; 22)

219 2 | )

TS SHLEEIES SHIED SRl ST NS She

p(X1)p(Xs) = N (




Linear Process Model

= Consider a time-discrete stochastic process (Markov chain)




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian

Xt N(Mta Et)




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
X N ( ot Et)

» “Assume that the system evolves linearly over time, then

Xt = AXs g




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
X N ( ot Et)

» “Assume that the system evolves linearly over time, then depends linearly on

the controls
x: = Ax¢s—1 + Bu




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
X N ( ot Et)

Assume that the system evolves linearly over tfime, then depends linearly on
the controls, and has zero-mean, normally distributed process noise

x; = Axy 1+ Buy + ¢
- win € ~ N (0,Q)




Linear Observations

= Further, assume we make observations that depend linearly on the state

i — CXt




Linear Observations

= Further, assume we make observations that depend linearly on the state and
that are perturbed zero-mean, normally distributed observation noise

i — CXt -+ 51&
= With (4 NN(OjR)




Kalman Filter

= Estimates the state x, of a discrete-fime confrolled process that is governed
by the linear stochastic difference equation

x; = Ax;_1 + Bu, + ¢

= And (linear) measurements of the state
z: = Cx¢ + 0y
= With €4 ~~ N(O? Q)ond (St ~ N(O,, R)




Kalman Filter
siate X € R™

Controls 11 & Rl

Observations 7 & Rk

Process equation Xt =— AXt_l —+ BUt + €
nx

nxn

Measurement equation Zt — CXt _|_ 5t

nxk




Kalman Filter

= |nitial belief is Gaussian

Bel(.’l?()) — N(X(); Ko, 20)
= Next state is also Gaussian (linear transformation)

Xt N(AX{; —+ Bllt,, Q)

» QObservations are also Gaussian

Ly N(CXt,, R)




Recall: Bayes Filter Algorithm

= For each step, do:

= Apply motion model

@(Xﬁ) — /p(Xt‘Xt_l,,ut)BE?l(Xt_l)dXt_l

= Apply sensor model

Bel(x;) = np(z:|x:) Bel(x;)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

@(Xt) — / p(Xt‘Xt—lj llt) Bfﬂl(Xt_l) dXt_l
— —

N (xt;Axt—1+Bupt, Q) N (x¢—150¢ 1,2, )




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

B@l(Xt) — / p(Xt‘Xt—lj llt) B€Z(Xt_1) dXt_l
N —’ N—_———
N (x¢;Axi—1+Bugt, Q) N (xe—150e—1,%, )

= N (X Aut__l +Bu, AXA" + Q)
— N(Xt; ﬂta Et)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x;) =n p(z:|x:) Bel(x:)
—_——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; Ut Kt(Zt — C/j)? (I e Kt)C)f])
= N (@; i, 3¢)

= With Kt — itCT(CEtCT —|— R)_l (Kalman Gain)




From Bayes Filter to Kalman Filter

Blends between our previous estimate 4+ and the discrepancy between our
sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain.
And this depends on a formula based on the errors of sensing etc. In fact it
depends on the ratio between our uncertainty ¥ and the uncertainty of our

sensor observations R.

ﬂt + Kt(zt — C/j)

SN\

old mean Kalman
Gain



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x;) =n p(z:|x:) Bel(x:)
—_——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; Ut Kt(Zt — C/j)? (I e Kt)C)f])
= N (@; i, 3¢)

= With Kt — itCT(CEtCT —|— R)_l (Kalman Gain)




Kalman Filter Algorithm

= For each step, do:

= Apply motion model (prediction step)

= Ap_; + Buy
3, =AXA" +Q

= Apply sensor model (correction step)

pe = e+ Ki(z, — Cpay)
Et — (I — KtC)E_Jt

= With Kt — itCT(CStCT —l— R)_l




Kalman Filter Algorithm

Prediction & Correction steps
= For each step, do: can happen in any order.

= Apply motion model (prediction step)

= Ap_; + Buy
3, =AXA" +Q

= Apply sensor model (correction step)

pe = e+ Ki(z, — Cpay)
Et — (I — KtC)E_Jt

- Ky = 2,CN(CE,C" +R)™!




Kalman Filter Algorithm

Prediction & Correction steps
can happen in any order.

T Corecion

e = i+ Ki(z, — Cpiy)
Et — (I — KtC)it

Kt — itCT(CStCT —I— R)_l

= Apy_y + Buy
it — AZAT ‘|‘ Q

%




Complexity

= Highly efficient. Polynomial in the measurement dimensionality k and state

dimensionality n
O(k2'376 1+ ’I’L2)

ptimal for linear Gaussian systems

= But most robots are nonlinear! This is why in practice we use Extended Kalman
Filters and other approaches.
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Subsection 4: Kalman Filter - State Space Derivation




KF State Space Derivation

= Assume that we want to know the value of a variable within a process of the form:

rre1 = Pxp + wy EqL.]

= x,..the state vector of the process at time k (nx1)

» O is the state transition matrix of the process from the state k to k+1 — assumed stationary
over time — (nxm)

= w, . associated white noise process with known covariance (nx1)

= Observation on this variable can be modelled in the form:

Zk = ng + Vi Eq.2

» z..actual measurement of x at fime k (mx1)

= H: noiseless connection between the state vector and the measurement vector — assumed
stationary over time — (mxn)

= p,.. White noise process with known covariance and zero cross correlation with wy, (mx1)




KF State Space Derivation

= For the minimization of the Mean Square Error (MSE) to yield the optimal filter, it must
be possible to correctly model the system errors using Gaussian distributions. The
covariances of the two noise models are assumed stationary over time and given by:

Q = E[wywi] Eq.3

Covariances Formula

R = E [vzv]] Eq.4

The mean squared error formulation gives:

. T _ . ~ T
e RO e e el (Eq.5 | E [exei] = Pv—> Py = Elesef] = E [($k — &) (zx — Zk) ]
= P,.is the error covariance matrix at time k (nxn)

= |et the prior estimate of %, be X, (gained by knowledge of the system). We can
write an update equation for the new estimate, combining the old estimate with
measurement data:

&y = &, + Ky(ar — HZy) Eq.6

» K. the Kalman Gain

» i, = 2 — HZy isthe innovation or measurement residual | EQ.7




= Through substitution of EQ.2 to Eq.é:

= Through substitution of EQ.8 to Eq.5:
P, = E [[(I — K;H)
(I — KyH)

= P, is the prior estimate of Py

(1
(zn

KF State Space Derivation

T = ff,‘k -+ Kk(Hiﬂk + v — H:ﬁ'i)

— £) — Kpug]
- &) - Kkvk]T}

P = (I- KkH)E[(xk — ) (2 — ;’ﬁ;ﬂ)T} (I — KuH)
+  KipFE [vkvﬂ K;f

= Through substitution of Eq.4 and EqQ.5 to Eq.9:

ST MO Lo [Tl (A Lo (o1 [-Q P: = (I — KxH)P.(I — KiH)" + KyRKT

Eq.8

= The difference x, — X is the error of the prior estimate. As this is uncorrelated with the
measurement noise, the expectation may be rewritten as:

Eq.10

EQ.11




KF State Space Derivation

= EQ.11 is the error covariance update equation. The diagonal of the covariance

maltrix contains the mean squared errors:
E [e;@_lef_l] FE [ekeg_l] E [ekﬂeg_l]
P.. = E [ek_leg] E [ekeﬂ E [ek+1ef]
E [ek—lefﬂ] E [ekegﬂ] E [ek+1ef+1]

EQ.12

» The sum of the diagonal elements of a maitrix is its trace. In the case of the error covariance
matrix, the trace is the sum of the mean squared errors. Therefore, the mean squared error
may be minimized by minimizing the trace of P; which in turn will minimize the trace of Py,,.

= The trace of P, is first differentiated with respect to K, and the result set to zero in order to

find the conditions of this minimum.

= Expansion of Eq.11 gives: P. = P, — K HP, — PIH'K;, + K, (HP{H" + R) K

= As the trace of a matrix is equal to the trace of its transpose:

T[P,) = T[P]] — 2T[KwHP]] + T [K; (HP,HT + R) K]

= T|[P,] is the trace of the matrix Py

= Differentiating with respect to K;, gives:

Eq.13

Eq.14

dT [Py]
K}

= —2(HP)T + 2K, (HP,HT + R)

Eq.15




KF State Space Derivation

= Setting Eq.14 to zero and re-arranging gives:
(HP}))" = K, (HP.H" + R)

YT

hich is the Kalman Gain Equation —T

= And solving for K:

St = HP/H" + R

= Finally, through substitution of Eq.17 info EQ.13:

—1
SR e o8 = P - PH (HRH" + R) HP
update with optimal gain = P - K HP,

= (I - K;H)P,

= The innovation i, (Eq.7) has an associated measurement prediction covariance:

Eq.16

Eq.17/

Eq.18

EQ.19

Eq.20

= Eq. 19 is the update equation for the error covariance matrix with optimal gain. The three
equations Eq.6, Eq.17 and EqQ.19 develop an estimate for x;. State project is achieved using:



KF State Space Derivation

= To complete the recursion it is necessary to find an equation which projects the error
covariance matrix into the next time interval, k+1. This is achieved by first forming an
expression for the prior error:

€yl = Thy1 — Tpyg
=  (®x, + w) — Py Eq.21
= Pep + wy
Extending EQ.5 to k+1:
Pii, = Eletpiei] = E[(‘I’ek + wy) (Pey + wk)T] EqQ.22

= Note that e, and wy have zero cross-correlation because the noise w, accumulates
between k and k+1, whereas the error ey is the error up until time k. Thus:

Pli-l-l = £k [6594-16{-@1]
= F [(I)ek (q)e;c)T} + FE [wk'wg} Eq23
= ®Pd" + Q

= This completes the recursive filter. @



KF State Space

Derivation

Inifial Estimates

Measurements

Kalman Gain

Project info k+1

Update Estimate

Update Covariance [«

Projected Estimates
Description
Kalman Gain

Update/Correct Estimate

Update/Correct Covariance

Project/Predict into k+1

Updated State Estimates

K. =P.(HPH" + R)"1
T = f;e + Kk(zk, — H.Cﬁ;c)
P.= (I — KyH)P]

£;c+1 = 01y,
P = PO +Q




Model Covariance Update

= The model parameter covariance has been considered in the its inverted form
where it is known as the information matrix. It is possible to formulate an alternative
update equation for the covariance matrix using standard error propagation:

Pt =P + HRT'H" £Q.22

= |t can be shown that the covariance updates of Eq.22 and Eq.19 are equivalent. This
may be achived by using the identity P, x P! = I. The original, Eq.19 and alternative
Eq.22 forms of the covariance update equations are:

P, = (I — K H)P,and P,' = P[7" + HR'HT Eq.23
Therefore: (I — K H)P, x P["' + HR'HT =1 Eq.24
Substitution for K, gives: P — PLHT (HP{HT + R) " HP| [P" + HTR™H]

-1

- I - PHT [(HP,;HT + R)

EqQ.25

- R+ (HP[H" + R) 'HP{H'R'|H

I - PHT [(HP;,HT + R)'(I + HPLHTR™") - R—l]H

I - PBH"[R™" — R7'|H
I

(I
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Subsection 4: A Python programming-oriented introduction




Python fools for probability computations

Mean

import numpy as np
x = [1.85, 2.0, 1.7, 1.9, 1.6]
print(np.mean(x))

Median

print(np.median(x))

Variance

print(np.var(X), "meters squared")

Standard deviation and Variance

print('std {:.4f}'.format(np.std(X)))
print('var {:.4f}'.format(np.std(X)**2))




Python fools for probability computations

» Gaussians

from filterpy.stats import plot_gaussian_pdf
plt.figure()

ax = plot_gaussian_pdf(mean=1.8, variance=0.1414%%*2,
xlabel="'Student Height', ylabel='pdf')

Probability
Density
Function 20

14 15 16 1.7 18 19 20 21 22
Student Height



Python fools for probability computations

= Gaussian Distributions

» A Gaussian is a Probability Density Function defined by its mean parameter (u) and its

variance (02) as follows:

f($aﬂ:f J) — o exp( 252

%load -s gaussian stats.py

def gaussian(x, mean, var):
"""returns normal distribution for x given a
gaussian with the specified mean and variance.

return (np.exp((-9.5%(np.asarray(x)-mean)**2)/var) /
math.sgrt(2*math.pi*var))

from filterpy.stats import gaussian, norm_cdf

with interactive_plot():
ax = plot_gaussian_pdf(22, 4, mean_line=True, xlabel="$~{\circ}C$')




Python fools for probability computations

= Gaussian Distributions

%load -s gaussian stats.py

def gaussian(x, mean, var):

"""returns normal distribution for x given a
gaussian with the specified mean and variance.
e

return (np.exp((-2.5%(np.asarray(x)-mean)**2)/var) /
math.sgrt(2*math.pi*var))

from filterpy.stats import gaussian, norm_cdf

with interactive_plot():
ax = plot_gaussian_pdf(22, 4, mean_line=True, xlabel="'$~{\circ}C$')

020

0.15

0.10

0.05

0.00




Python fools for probability computations

= Gaussian Distributions

015
0.10

005

0.00
20 2 24 % 23

= Calculation of the area under the curve (cumulative distribution function)

/x RPN C il DA P S

, oV2m 207

print('Probability of range 21.5 to 22.5 is {:.2f}%'.format(
norm_cdf((21.5, 22.5), 22,4)%*100))

print('Probability of range 23.5 to 24.5 is {:.2f}%'.format(
norm_cdf((23.5, 24.5), 22,4)%100))




Python fools for probability computations

=» The Variance and Belief

= Small standard deviation indicates better confidence.

import numpy as np
import matplotlib.pyplot as plt

Xs = np.arange(15, 38, ©.85)

with interactive_plot():
plt.plot(xs, gaussian(xs, 23, ©.05), label='$\sigma”2$=0.85"'
plt.plot(xs, gaussian(xs, 23, 1), label='$\sigma~2$=1", 1ls=':'
plt.plot(xs, gaussian(xs, 23, 5), label='$\sigma~2$=5', ls='--', c='b")
plt.legend()
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Python fools for probability computations

=» The 30 rule

= Within 30 around the mean, 99.7% of all the cumulative probability is covered.

/N




Designing a simple Kalman Filter in Python

= Assume we track an object over an axis.

= Consider that we now believe it is at 10m with a significant uncertainty.

from book_format import set_figsize, figsize
from code.book_plots import interactive_plot
import matplotlib.pyplot as plt

import filterpy.stats as stats
with interactive_plot():
stats.plot_gaussian_pdf(mean=10, variance=1,
xlim=(4, 16), ylim=(@, .5))

05

04

03

02

01

00

4 6 8 10 12 14 16

= Can we get many measurements to robustify our estimate about the position of the robote




Designing a simple Kalman Filter in Python

= So let’'s get many measurements...

import code.book_plots as bp
import numpy as np
from numpy.random import randn

Xs range(5ee)
ys = randn(5e0)*1 + 10.
with interactive_plot():
# = bp.plot_track(xs, ys)
plt.plot(xs, ys)
print('Mean of readings is {:.3f}'.format(np.mean(ys)))

0 100 200 300 400 500

» Getting these measurements as a batch and computing the mean indicates that the
position is 10. Can we do that better, online, real-time, recursivelye




Designing a simple Kalman Filter in Python

= Tracking with Gaussian Probabilities

= To represent where the object is considered to be per measurement we write the Gaussian:

v =N(u,0°)

= And we can use every new step of measurement update to conduct a prediction and an

update step: .’J_S‘N — Tnr 69 St
f:w()
i = LR in

= where @ ® are “unknown” (for now) operators that can perform the predict and
update steps.




Designing a simple Kalman Filter in Python

= Tracking with Gaussian Probabilities: Prediction

= We need to represent the change in motion as a Gaussian. Therefore, let f, be the “change
in the motion of the object”. So the new position predicted will be:

T=x+ [,
Which is suitable because the sum of two Gaussians, is also Gaussian with parameters:
f= p1 + 2

2 _ 2 2
0" = 0] + 0,

= This allows us to write the update step as:

def predict(pos, movement):
return (pos[@] + movement[@], pos[1] + movement[1])




Designing a simple Kalman Filter in Python

= Tracking with Gaussian Probabilities: Update

= The update step will have to work on the current prior and the likelihood to derive the next
estimate. This can be written as:

v = ||Lz]|

The prior is represented as a Gaussian. At the same time, the likelihood is the probability of
the measurement given the current state — which is also a Gaussian. Multiplication of two
Gaussians is a more complex operation taking the form:

N (i, 0?) = ||prior - likelihood||

I, o< - N(Mza 0-3)

N(Jz,uz + agu 0203
G2+ 02 g2+ o2

)




Designing a simple Kalman Filter in Python

= Tracking with Gaussian Probabilities: Update
N (i, 0?) = ||prior - likelihood||
— — 2
My 0-_62' N(Mmz(zz) .
N(O Uy +O 0 070,
G2+ 02 g2+ 02

)

= Which then is coded as:

def gaussian_multiply(gl, g2):
mul, varl = gl
mu2, var2 = g2
mean = (varl*mu2 + var2*mul) / (varl + var2)
variance = (varl * var2) / (varl + var2)
return (mean, variance)

def update(prior, likelihood):

posterior = gaussian_multiply(likelihood, prior)
return posterior
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= Gaussian multiplication affects both the mean (now a function of the previous mean values
and the variances) as well as the variances (now a function of the previous variances).

import filterpy.stats as stats
import matplotlib.pyplot as plt

z = (1., 1.) # Gaussian N(1@, 1)
with interactive_plot():
product = gaussian_multiply(z, z)
Xs = np.arange(5, 15, ©.1)

ys [stats.gaussian(x, z[@], z[1]) for x in xs]
plt.plot(xs, ys, label="$\mathcal{N}(1©,1)%")

ys = [stats.gaussian(x, product[@], product[1]) for x in xs]
plt.plot(xs, ys, label='$\mathcal{N}(1©,1) \\times \mathcal{N}(10,1)$', 1ls="--")
plt.legend()

print(product)
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= Gaussian multiplication affects both the mean (now a function of the previous mean values
and the variances) as well as the variances (now a function of the previous variances).

06
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= Gaussian multiplication affects both the mean (now a function of the previous mean values

and the variances) as well as the variances (now a function of the previous variances).
06
—_ M10.2,1)
05 —_ ANO.7.1)
- = product
04
03
0.2
01
00
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= Gaussian multiplication affects both the mean (now a function of the previous mean values
and the variances) as well as the variances (now a function of the previous variances).

07
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= Gaussian multiplication affects both the mean (now a function of the previous mean values
and the variances) as well as the variances (now a function of the previous variances).

07
— AN(8.5,1.5)
06 — — AN(10.2,1.5)
\ = = product
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import code.kf_internal as kf_internal

A FirslII qumqn Fi".er from code.kf_internal import DogSimulation
Implemenfqiion np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (©., 480.) # dog's position, N(e, 4ee)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(1@)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
Xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
X = update(prior, likelihood)

# save results

predictions.append(prior[@])

Xs.append(x[e])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3f}"'.format(x[©]))
print('actual final position: {:18.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3f}"'.format(x[@]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3f}"'.format(x[@]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3f}"'.format(x[@]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3fF}'.format(x[©]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3fF}'.format(x[©]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3fF}'.format(x[©]))
print('actual final position: {:10.3f}'.format(dog.x))




import code.kf_internal as kf_internal
from code.kf_internal import DogSimulation

np.random.seed(13)

process_var = 1. # variance in the dog's movement
sensor_var = 2. # variance in the sensor

x = (8., 480.) # dog's position, N(@, 4ee6)
velocity = 1

dt = 1. # time step in seconds
process_model = (velocity*dt, process_var)

# simulate dog and get measurements

dog = DogSimulation(x[@], process_model[@],
sensor_var, process_model[1])

zs = [dog.move_and_sense() for _ in range(10)]

print('PREDICT\t\t\tUPDATE")
print(’ X var\t\t z\t X var')

# run the filter
xs, predictions = [], []
for z in zs:
prior = predict(x, process_model)
#print(prior)
likelihood = (z, sensor_var)
x = update(prior, likelihood)

# save results

predictions.append(prior[@])

xs.append(x[@])

kf_internal.print_gh(prior, x, z)
print()
print('final estimate: {:10.3fF}'.format(x[©]))
print('actual final position: {:10.3f}'.format(dog.x))
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The Actual Kalman
Filter Steps

for z in zs:
prior = predict(x, process_model)
likelihood = (z, sensor_var)
X = update(prior, likelihood)
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= To understand better how the filter works let's go back and remember that the posterior is

computed as the likelihood fimes the prior. -
0 [z + O 1
o2 + o2

5.2 0'2 -
= (m) fz T (ozfag) H
= As shown we are in fact scaling the measurements and the prior by probabilistic weights:
M = Wlﬂz + WZﬂ
» |et usintroduce the Kalman Gain as:

K=W = K=

= Therefore the mean of the posterioris: =

= Or equivalently:

5.2

0% 4 02

=then: = Kpu, +(1—-K)i=p=p+ K(u, —f)
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What is happening: The Kalman Gain

= A visualization of how the Kalman Filter weighting process works:

nen/)

Ty

rediction

measurement (z)

f
gg‘térﬁg}f (1)
+ Ry residual(y)

Yy=2— Iy

P
'______————-—__-—__—_‘pgor (i{ )

posterior (z; ;)
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= Then the update function of the filter can be written as:

def update(prior, measurement):
X, P = prior # mean and variance of prior
Z, R = measurement # mean and variance of measurement

y =z - X # residual

K =P/ (P+ R) # Kalman gain

X = X + K*y # posterior

P=(P *R) / (P+ R) # posterior variance

return x, P



Multivariate Kalman Filter

= |n fact we implement a discretized continuous-time kinematic filter and they are
applicable to Newtonian systems.

= For such systems, and under constant velocity assumption (applicable to an iteration):

dx

’U——

:c—’udt

[,= )

a’;—vt—l—xo

= Note that for many systems/processes, state update integration is not that simple.




Multivariate Kalman Filter

Initialization

» |nitialize the state of the filter

» |nitialize our belief in the state

Predict

= Use process model to predict the state at the next time step

= Adjust belief to account for the uncertainty in the prediction

Update/Correct

» Get a measurement and associated belief about its accuracy

= Compute residual between estimated state and measurement

= Compute scaling factor based on whether the measurement or prediction is more accurate
= Set state between the prediction and measurement based on scaling factor

» Update beliefin the state based on how certain we are in the measurement.




Multivariate Kalman Filter

Univariate Multivariate
T=2x+ f, % = Fx + Bu
5‘2:0'24—0'?- P =FPF' +Q

I

= X, P are the state mean and covariance. They correspond to x and ¢?

= F,Q are the process mean and covariance. They correspond to f, and o,

= B and u are the control allocation matrix and the input vector.
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Update/Correction

Univariate | Multivariate

K=_-Z_ |K=PH (HPH +R)!

g2 4o2
r=z+ Ky | x=X+Ky
o = ;;’33 P—(I-KH)P

= His the measurement function.
= 7z R are the measurement mean and noise covariance.

= vy, K are the residual and Kalman gain.

= The details will be different than the univariate filter because these are vectors and matrices, but the concepts are the same:
» Use a Gaussian to represent our estimate of the state and error

Use a Gaussian to represent the measurement and its error

Use a Gaussian to represent the process model

Use the process model to predict the next state (the prior)

Form an estimate part way between the measurement and the prior @




Multivariate Kalman Filter

Predict Step

= For the multivariate case we will infroduce “hidden” (velocity) variables. Simulation of the
motion:

import math
import numpy as np
from numpy.random import randn

def compute_dog_data(z_var, process_var, count=1, dt=1.):
X, vel = 0., 1.
z_std = math.sqrt(z_var)
p_std = math.sgrt(process_var)
xs, zs = [], []
for _ in range(count):
v = vel + (randn() * p_std * dt)
X += v¥dt
xs.append(x)
zs.append(x + randn() * z_std)
return np.array([xs, zs]).T

= Then load the Kalman prediction, update/correction functions:
from filterpy.kalman import predict, update



Multivariate Kalman Filter

Predict Step

= For this problem we are tracking both the position and the velocity (“hidden” variable). This
requires to use a multivariate Gaussian: x and P.

= Note that variables might be observed (a sensor measures a relevant value) or hidden. Velocity does
not have to be hidden always. This was simply an assumption for the example. The state vector
contains both these values, although the outputs vector might only contain some of them.

Design State Covariance

= The covariance in a multivariate Kalman Filter has the role of the variance in a univariate KF.

= The Covariance Matrix is structured as follows:
= Covariance Matrix diagonal terms: variances of each variable.
= Covariance Matrix off-diagonal terms: covariances among the variables.

= example:

500 0

P=10 49

P = np.diag([5ee, 49])
%precision 3
P
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Design the Process Model

= The transition model (this is what is computed within the predict function):

X = Fx

from filterpy.kalman import predict

X = np.array([16.8, 4.5])
P = np.diag([500, 49])

# Q 1s amount of noise in the process,
# we will Llearn about it Later

Q=29

x, P = predict(x, P, F, Q)

X

= The filter predicts how the state will be as well as the covariance matrix.
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Design the Process Model

= [et's have a look at the covariance matrix;

from code.book_plots import interactive_plot
from filterpy.stats import plot_covariance_ellipse

dt = 0.3

F = np.array([[1, dt], [e, 1]])
X = np.array([16.8, 4.5])

P = np.diag([5e@, 5ee])

with interactive_plot():
plot_covariance_ellipse(x, P, edgecolor='r')
X, P = predict(x, P, F, Q)
plot_covariance_ellipse(x, P, edgecolor='k', ls="'dashed')

array([[ 512.25, 24.5 1],

20 [ 24.5, 49. 11
10
° off-diagonal terms!
=10
=20
-60 -40 -20 0 20 40 60 80
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Design the Process Noise

= |n general the noise is added (for LTl systems as):

x = f(x)+w LINEAR: x= Ax+ Bu

= |n general refer to the previous sections on how it is modeled. For the moment let’s stick on:

Q= E[lww’]

from filterpy.common import Q_discrete_white_noise
Q = Q_discrete_white_noise(dim=2, dt=1., var=2.35)
Q
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Predict Step

Design the Control Function

= The complete —-before noise- representation will be:

X = Fx 4+ Bu
= QOrin standard continuous time notation:
Xx = Ax + Bu

= |ncluding noise:

X=Fx+Bu+w
X =Ax+Bu+w

= Overall Kalman Filter Predictionstep  predict(x, P, F, Q, B, u)

= For this example:

bLeqrce(x® b* E* 6 B n)
n=2g
B = 68" % WA qod qos2u,f [S2{6U [O Wej
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Predict Step

= Summary of Design parameters:

= X, P: the state and covariance
= F,Q: the process model and noise covariance

= B,u. if present, the control matrix and input vector
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Update/Correction Step
___ Design the Measurement Function |

Design the Measurement Function

= Form of the measurement function:

y =z — HX
measurement (z)

ne&l) estimart§a ()

\ osterio
T+ Ky residual(y) -
y = — Ha_ft E
prediction —> @
prior ()

time

@
posterior (z; 1)
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Design the Measurement

= The measurement has mean z and covariance R.

= |t corresponds to the covariance matrix on the measurement noise elements, their own variances
and covariances.




Multivariate Kalman Filter

Update/Correction Step

= Coding Form of the Kalman Filter update step:

from filterpy.kalman import update
z = 1.

X, P = update(x, P, z, R, H)

X




Multivariate Kalman Filter

Implementing the Kalman Filter

= Write the filter

from filterpy.kalman import KalmanFilter
from filterpy.common import Q_discrete_white_noise

def pos_vel_filter(x, P, R, Q=0., dt=1.0):
""" Returns a KalmanFilter which implements a
constant velocity model for a state [x dx].T

FERERT

kf = KalmanFilter(dim_x=2, dim_z=1)

kf.x = np.array([x[@], x[1]]) # Location and velocity
kf.F = np.array([[1, dt],

[e, 11D # state transition matrix
kf.H = np.array([[1, ©]]) # Measurement function
kf.R *= R # measurement uncertainty
if np.isscalar(P):

kf.P *= P # covariance matrix
else:

kf.P[:] =P
if np.isscalar(Q):

kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=Q)
else:

kf.Q = Q

return kf
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Implementing the Kalman Filter

= Create the filter

dt = .1

X = np.array([@., ©.])
kf = pos_vel_filter(x, P=560, R=5, Q=0.1, dt=dt)
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Implementing the Kalman Filter

= Run the filter

from code.mkf_internal import plot_track

def run(xe=(e.,e.), P=50e@, R=0, Q=0, dt=1.8, data=None,
count=08, do_plot=True, **kwargs):
‘data’ 1is a 2D numpy array; the first column contains
the actual position, the second contains the measurements

o

# Simulate dog if no data provided. This is handy because
# 1t ensures that the noise in the dog simulation and the
# kalman filter are the same.
if data is None:

data = compute_dog_data(R, Q, count)

# create the Kalman filter
kf = pos_vel_filter(xe, R=R, P=P, Q=Q, dt=dt)

# run the kalman filter and store the results
xs, cov = [1, []
for z in data[:, 1]:

kf.predict()

kf.update(z)

xs.append(kf.x)

cov.append(kf.P)

Xs, cov = np.array(xs), np.array(cov)
if do_plot:
plot_track(xs[:, @], data[:, @], data[:, 1], cov,
dt=dt, **kwargs)
return xs, cov
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Implementing the Kalman Filter

= Results

Kalman Filter

position

40 o Measurements

0 10 20 30 40 50

tima
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Implementing the Kalman Filter

= Results

10

o? (pos variance) o? (vel variance)
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Implementing the Kalman Filter

= Results :: Plot the Gaussians

from book_format import set_figsize, figsize
from code.nonlinear_plots import plot_gaussians

P = np.diag([3., 1.])
np.random.seed(3)
Ms, Ps = run(count=25, R=10, Q=0.01, P=P, do_plot=False)
with figsize(x=9, y=5):
plot_gaussians(Ms[::7], Ps[::7], (-5,25), (-5, 5), 75) 0.6
0.5
0.4
0.3
0.2
0.1
0.0

25




Multivariate Kalman Filter

= |n fact we implement a discretized continuous-time kinematic filter and they are
applicable to Newtonian systems.

= For such systems, and under constant velocity assumption (applicable to an iteration):

dx

’U——

:c—’udt

[,= )

a’;—vt—l—xo

= Note that for many systems/processes, state update integration is not that simple.
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