Autonomous Mobile Robot Design

Sampling-based Aerial Robotic Inspection & Exploration Planning – A Primer

Dr. Kostas Alexis (CSE)

Motivation

- Autonomous Exploration and Inspection of even unknown or partially known environments.
- Autonomous complete coverage 3D structural path planning
- Enable real-time dense reconstruction of infrastructure
- Consistent mapping and re-mapping of infrastructure to derive models and detect change
- Long-endurance mission by exploiting the ground robot battery capacity
- Aerial robots that autonomously inspect our infrastructure or fields, detect changes and risks.

Known Model to Compute Global Inspection Path Unknown Model – execute Autonomous Exploration

Known Model to Compute Global Inspection Path

Unknown Model – execute Autonomous Exploration

The inspection path planning problem

Consider a dynamical control system defined by an ODE of the form:

$$\frac{dx}{dt} = f(x, u), x(0) = x_{init}$$

- Where is x the state, u is the control. As well as a sensor model of field of view $FOV = [F_H, F_V]$ and maximum range d.
- Given an obstacle set X_{obs} , and a inspection manifold S_I , the objective of the motion planning problem is to find, if it exists, a path r that provides the viewpoints to the sensor such that the whole surface of S_I is perceived, the vehicle dynamics are respected and the cost of the path (distance, time, etc) is minimized.

Rapidly-exploring Random Tree-Of-Trees (RRTOT)

- Problem: given a representation of the structure find the optimal coverage path.
- Challenges: can we find the optimal path? Can we converge asymptotically to that solution?
- **Goal:** Provide an algorithm that can incrementally derive the optimal solution and be able to provide admissible paths "anytime".

RRTOT: Functional Principle

Overcome the limitations of motion planners designed for navigation problems.

Vary the solution topology – be able to find the optimal solution. X`

Overcome the limitations of SIP but in a computationally very expensive way.

RRTOT: Functional Principle

Comparison with the state-of-the-art: RRTOT seems to be able to provide solutions faster.

 Comparison against: G Papadopoulos, H Kurniawati, N Patrikalakis, "Asymptotically optimal path planning and surface reconstruction for inspection", IEEE International Conference on Robotics and Automation (ICRA) 2013.

RRTOT: Indicative Solutions

Holonomic

Nonholonomic

An Incremental Sampling-based approach to Inspection Planning: the Rapidly-exploring Random Tree Of Trees

Andreas Bircher, Kostas Alexis, Ulrich Schwesinger, Sammy Omari, Michael Burri and Roland Siegwart

Benefits and Disadvantages

- Quality of the Solution: Proven to provide asymptotically optimal solution.
- Complexity: Practically intractable for large scale problems
- **Purpose:** More of a "theoretical tool" to compare other algorithms.

Can we find a "good enough" solution but compute very fast?

Basic Concepts of the Inspection Planner

- Main classes of existing 3D methods:
 - Separated Approach (AGP + TSP or Control)
 - Prone to be suboptimal
 - In specific cases lead to infeasible paths (nonholonomic vehicles)
 - First attempts for optimal solutions via a unified cycle
 - In specific cases can lead to the optimal solution
 - Very high CPU and Memory Requirements & Time

Structural Inspection Planner (SIP):

- Driven by the idea that with a continuously sensing sensor, the number of viewpoints is not necessarily important but mostly their configuration in space.
- Not a minimal set of viewpoints but a set of full coverage viewpoints positioned such that the overall path gets minimized.
- 2-step paradigm with viewpoint alternation
- Guaranteed feasible paths for both holonomic and nonholonomic vehicles

Structural Inspection Planner (SIP)

- Load the mesh model
- ♦ k = 0
- Sample Initial Viewpoint Configurations (Viewpoint Sampler)
- Find a Collision-free path for all possible viewpoint combinations (BVS, RRT*)
- Populate the Cost Matrix and Solve the Traveling Salesman Problem (LKH)
- while running
 - Re-sample Viewpoint Configurations (Viewpoint Sampler)
- Available Time
- Re-compute the Collision-free paths (BVS, RRT*)
- Re-populate the Cost Matrix and solve the new Traveling Salesman Problem to update the current best inspection tour (LKH)
- ▶ k = k + 1
- end while
- Return BestTour, CostBestTour

Optimized solutions

First solution

SIP: Supported World Representations

Octomap [possibly enlarged voxels]

Not currently open-sourced

Meshes [possibly downsampled]

Supported in the open-sourced SIP

SIP: Viewpoint Sampler

Optimize Viewpoint Configurations

- Admissible viewpoints are optimized for distance to the neighboring viewpoints
- To guarantee admissible viewpoints, the position solution g = [x,y,z] is constrained to allow finding an orientation for which the triangular face is visible:

$$\begin{pmatrix} (g-x_i)^T n_i \\ (g-x_1)^T a_N \\ -(g-x_1)^T a_N \end{pmatrix} \succeq \begin{bmatrix} 0 \\ d_{min} \\ -d_{max} \end{bmatrix}, i = \{1, 2, 3\}$$

• Account for limited **F**ield of **V**iew by imposing a revoluted 2D-cone constraint. This is a nonconvex problem which is then convexified by dividing the problem into N_c equal convex pieces.

$$\begin{bmatrix} (g - x_{lower}^{rel})^T n_{lower}^{cam} \\ (g - x_{upper}^{rel})^T n_{upper}^{cam} \\ (g - m)^T n_{right} \\ (g - m)^T n_{left} \end{bmatrix} \succeq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Incidence angle constraints on a triangular surface Camera constraints and convexification

SIP: Viewpoint Sampler

Sample 1 Viewpoint/Triangular face

Minimize the sum of squared distances to the preceding viewpoint g_{p}^{k-1} , the subsequent viewpoint g,^{k-1} and the current viewpoint in the old tour **g**^{k-1}.

$$\min_{g^k}$$

s.t.

$$(g^k - g_p^{k-1})^T (g^k - g_p^{k-1}) +$$

$$+ (g^{k} - g_{s}^{k-1})^{T} (g^{k} - g_{s}^{k-1}) + (g^{k} - g^{k-1})^{T} (g^{k} - g^$$

 $n_{left}^T m$

g $a_N m n_1$ q^{k-1}) n_{3} x_1 x_3

> Incidence angle constraints on a triangular surface

Camera constraints and convexification

 n_{left}

 n_{upper}^{cam}

 x_{lower}^{rel}

 x_{upper}^{rel}

 N_C

 n_{lower}^{cam}

2

3

The heading is determined according to: $\min_{\psi^k} = \left(\psi_p^{k-1} - \psi^k \right)^2 / d_p + \left(\psi_s^{k-1} - \psi^k \right)^2 / d_s,$

s.t. Visible $(g^k, \psi^k) \blacktriangleleft$ While ensuring visibility, try to align the vehicle heading over a path

 n_{right}

- Compute RRT* Path
- Extract the t_{ex} of the RRT* Path

SIP: Point-to-Point Paths Populate the Cost Matrix

- State-Space Sampling extension to Control-Space sampling possible
- Employ Boundary Value Solvers for
 - Holonomic (with Yaw-rate constraints) or
 - Nonholonomic Aerial Robots (fixed-wing UAVs 2.5D approx., Dubins Airplane approx.)
- Derive Collision-free paths that connect all viewpoint configurations by invoking RRT*
- Assemble the Traveling Salesman Problem Cost Matrix using the path execution times t_{ex}

SIP: TSP Solution

- Solve the (possibly asymmetric) TSP problem using the Lin-Kernighan-Helsgaun heuristic
- Extract the Optimized Inspection Tour

Insert two new tour-completing edges

 $O(N^{2.2})$, N the number of viewpoints

Three-dimensional Coverage Path Planning via Viewpoint Resampling and Tour Optimization using Aerial Robots

A. Bircher, K. Alexis, M. Kamel, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart

Structural Inspection Path Planning via Iterative Viewpoint Resampling with Application to Aerial Robotics

Andreas Bircher, Kostas Alexis, Michael Burri, Phlipp Oettershagen, Sammy Omari, Thomas Mantel and Roland Siegwart

Large Scale Planning: Inspection of the JungFrau mountain (Simulation)

Uniform Coverage Inspection Path-Planning (UC3D)

- **Problem:** given a representation of the structure, compute a full coverage path that provides uniform focus on the details.
- Challenge: provide a good solution at "anytime".
- **Goal:** an efficient "anytime" inspection path planning algorithm with uniformity guarantees.
- Key for the solution: Voronoi-based remeshing techniques and a combination of viewpoint computation algorithms, collisionfree planners and efficient TSP solvers.

UC3D: Remeshing techniques play a key role

Voronoi-based remeshing techniques allow for uniform downsampling of the mesh with minimal structural loss

UC3D: Iterative UC3D-IPP

```
\begin{array}{l} \mathcal{V}^{i-1} \leftarrow \mathcal{V}^{basic} \\ \mathcal{V}^{i} \leftarrow \mathcal{V}^{i-1} \\ \mathcal{P}_{i} \leftarrow \text{ExtractPolygons}(\mathcal{G}_{i}, \mathcal{F}_{i}) \\ \textbf{for all } \mathbf{p}_{k,i} \in \mathcal{P}_{i} \textbf{ do} \\ \quad \textbf{if IsCoveredUniformly}(\mathbf{p}_{k,i}, \mathcal{V}^{i-1}) == \textbf{FALSE then} \\ \quad \mathbf{v}_{k,i} \leftarrow \text{ComputeViewpoint}(\mathbf{p}_{k,i}) \\ \mathcal{V}^{i} \leftarrow \mathcal{V}^{i} \cup \mathbf{v}_{k,i} \\ \textbf{for all } \mathbf{v}_{n} \in \mathcal{V}^{i} \textbf{ do} \\ \quad \textbf{for all } \mathbf{v}_{m} \in \mathcal{V}^{i} \textbf{ do} \\ \quad \mathbf{C}(n, m) \leftarrow \text{ConnectionDistance}(\mathbf{v}_{n}, \mathbf{v}_{m}) \\ \mathbf{r}_{i} \leftarrow \text{ComputeViewpointsRoute}(\mathbf{C}(n, m)) \\ \textbf{return } \mathbf{r}_{i} \end{array}
```

Difference of Iterative version:

For each higher quality mesh, instead of computing a whole new set of viewpoints, only some additional are added to re-ensure uniform coverage.

UC3D: Basic UC3D-IPP Result

Sequential execution of the basic UC3D-IPP algorithm

Uniform Coverage Structural Inspection Path-Planning for Micro Aerial Vehicles

K. Alexis, C. Papachristos, R. Siegwart, A. Tzes

Mesh Model

Inspection Path

Raw Camera Frames

What is exploration?

How robots map an unknown area in order to determine the conditions and characteristics of the environment (typically: to map it).

Exploration is different than Coverage

- Coverage problems assume that the map is known and the objective is to optimally cover and/or possibly identify targets of interest in it.
- Exploration problems deal with how to map a previously unknown world!

Applications of Autonomous Exploration

- Infrastructure monitoring and maintenance
- Rapid support of search and rescue operations
- Surveillance and reconnaissance
- Operation in any environment not suitable for human operators

Receding Horizon Next-Best-View Exploration

- Rapid exploration of unknown environments.
- Define sequences of viewpoints based on vertices sampled using random trees.
- Select the path with the best sequence of best views.
- Execute only the first step of this best exploration path.
- Repeat the whole process in a receding horizon fashion.

Receding Horizon Next-Best-View Exploration

- Rapid exploration of unknown environments.
- Define sequences of viewpoints based on vertices sampled using random trees.
- Select the path with the best sequence of best views.
- Execute only the first step of this best exploration path.
- Repeat the whole process in a receding horizon fashion.

The Exploration path planning problem

Problem Definition

The exploration path planning problem consists in exploring a bounded 3D space $V \subset \mathbb{R}^3$. This is to determine which parts of the initially unmapped space $V_{unm} = V$ are free $V_{free} \subset V$ or occupied $V_{occ} \subset V$. The operation is subject to vehicle kinematic and dynamic constraints, localization uncertainty and limitations of the employed sensor system with which the space is explored.

- As for most sensors the perception stops at surfaces, hollow spaces or narrow pockets can sometimes not be explored with a given setup. This residual space is denoted as V_{res} . The problem is considered to be fully solved when $V_{free} \cup V_{occ} = V \setminus V_{res}$.
- Due to the nature of the problem, a suitable path has to be computed online and in real-time, as free space to navigate is not known prior to its exploration.

RH-NBVP Functional Principle

RI

RH-NBVP Approach

- Environment representation: Occupancy Map dividing space V into $m \in M$ cubical volumes (voxels) that can be marked either as free, occupied or unmapped.
- Array of voxels is saved in an octree structure to enable computationally efficient access and search.
- Paths are planned only within the free space V_{free} and collision-free point-to-point navigation is inherently supported.
- At each viewpoint/configuration of the environment ξ , the amount of space that is visible is computed as $Visible(M,\xi)$

The Receding Horizon Next-Best-View Exploration Planner relies on the real-time update of the 3D map of the environment.

RH-NBVP Approach

• Tree-based exploration: At every iteration, RH-NBVP spans a random tree of finite depth. Each vertex of the tree is annotated regarding the collected Information Gain – a metric of how much new space is going to be explored.

 $\mathbf{Gain}(n_k) = \mathbf{Gain}(n_{k-1}) + \mathbf{Visible}(\mathcal{M}, \xi_k) e^{-\lambda c(\sigma_{k-1}^k)}$

• Within the sampled tree, evaluation regarding the path that overall leads to the highest information gain is conducted. This corresponds to the **best path** for the given iteration. It is a sequence of next-best-views as sampled based on the vertices of the spanned random tree.

RH-NBVP Approach

- Receding Horizon: For the extracted best path of viewpoints, only the first viewpoint is actually executed.
- The system moves to the first viewpoint of the path of best viewpoints.
 - Subsequently, the whole process is repeated within the next iteration. This gives rise to a receding horizon operation.

RH-NBVP Algorithm

NBVP Iterative Step

- $\xi_0 \leftarrow \text{current vehicle configuration}$
- Initialize **T** with ξ_0 and, unless first planner call, also previous best branch
- $g_{best} \leftarrow 0$ // Set best gain to zero
- $n_{best} \leftarrow n_0(\xi_0)$ // Set best node to root
- $N_T \leftarrow \text{Number of nodes in } T$
- while $N_T < N_{max}$ or $g_{best} == 0$ do
 - Incrementally build T by adding $n_{new}(\xi_{new})$
 - $N_T \leftarrow N_T + 1$
 - if $Gain(n_{new}) > g_{best}$ then
 - $n_{best} \leftarrow n_{new}$
 - $g_{best} \leftarrow Gain(n_{new})$
 - if $N_T > N_{TOT}$ then
 - Terminate exploration
- $\sigma \leftarrow ExtractBestPathSegment(n_{best})$
- Delete T
- return σ

RH-NBVP in Action

RH-NBVP Remarks

- Inherently Collision-free: As all paths of NBVP are selected along branches within RRT-based spanned trees, all paths are inherently collision-free.
- **Computational Cost:** NBVP has a thin structure and most of the computational cost is related with collision-checking functionalities. The formula that expresses the complexity of the algorithm takes the form:

 $\mathcal{O}(N_{\mathbb{T}}\log(N_{\mathbb{T}}) + N_{\mathbb{T}}/r^3\log(V/r^3) + N_{\mathbb{T}}(d_{\max}^{\text{planner}}/r)^4\log(V/r^3))$

RH-NBVP Evaluation (Simulation)

RI

Multi-Agent RH-NBVP Simulation

RH-NBVP Evaluation (Experiment)

RH-NBVP further remarks

- Relies on the capability of the robot to localize itself and 3D reconstruct its environment.
- Very efficient geometric exploration. Not accounting for the statistics of the 3D reconstruction.
- Multi-agent extension further requires a collaboration strategy.

Be a developer

Open Source Code:

- Structural Inspection Planner:
 - <u>https://github.com/ethz-asl/StructuralInspectionPlanner</u>
- Next-Best-View Planner:
 - <u>https://github.com/ethz-asl/nbvplanner</u>

Associated Datasets:

- Structural Inspection Planner:
 - https://github.com/ethz-asl/StructuralInspectionPlanner/wiki/Example-Results
- Next-Best-View Planner:
 - <u>https://github.com/ethz-asl/nbvplanner/wiki/Example-Results</u>
- Solar-powered UAV Sensing & Mapping:
 - http://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015

- A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Structural Inspection Path Planning via Iterative Viewpoint Resampling with Application to Aerial Robotics", IEEE International Conference on Robotics & Automation, May 26-30, 2015 (ICRA 2015), Seattle, Washington, USA
- Kostas Alexis, Christos Papachristos, Roland Siegwart, Anthony Tzes, "Uniform Coverage Structural Inspection Path-Planning for Micro Aerial Vehicles", Multiconference on Systems and Control (MSC), 2015, Novotel Sydney Manly Pacific, Sydney Australia. 21-23 September, 2015
 - K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, "Aerial robotic contact-based inspection: planning and control", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9485-5, ISSN: 0929-5593, http://dx.doi.org/10.1007/s10514-015-9485-5
- A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri and R. Siegwart "An Incremental Samplingbased approach to Inspection Planning: the Rapidly–exploring Random Tree Of Trees", accepted at the Robotica Journal (awaiting publication)
- A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Threedimensional Coverage Path Planning via Viewpoint Resampling and Tour Optimization for Aerial Robots", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9517-1, ISSN: 1573-7527
- A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View" Planner for 3D Exploration", IEEE International Conference on Robotics and Automation 2016 (ICRA 2016), Stockholm, Sweden (Accepted - to be presented)

Thank you! Rlease ask your question! General and anness

日日