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Elementary Background

= Linear Algebra
= Critical background
» Good overview: CS479/679:. Pattern Recognition :: Review of Linear Algebra
» We will summarize a few very common operations
ifferential Equations

= Critical background

= Good online course: Infroduction to Diff Eq :: Boston University

. 3
= Numerical tools q9

= Mostly MATLAB or Python for a smooth learning curve ]

- h’r’rp://www.kos’rosoIexis.com/simulo’rion—’rools.h’rml\/



http://www.kostasalexis.com/simulation-tools.html
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The dot product or scalar product (sometimes inner product in the context of Euclidean space, or rarely projection
product for emphasizing the geometric significance), is an algebraic operation that takes two equal-length
sequences of numbers (usually coordinate vectors) and returns a single number. @



Cross Product of 2 vectors
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The cross product or vector product (occasionally directed area product to emphasize the geometric significance)
is a binary operation on two vectors in three-dimensional space (R3) and is denoted by the symbol x. Given two
linearly independent vectors u and v, the cross product, u x v, is a vector that is perpendicular to both and

therefore normal to the plane containing them. It has many applications in mathematics, physics, engineering, and
computer programming. It should not be confused with dot product (projection product). @



Quter Product of 2 vectors

» |ef:
U= (U, U, ..., Up]|
V= [U1?U2te "'?U’n,]
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The outer product u ® v is equivalent to a matrix multiplication uv!, provided that v is
represented as a m x 1 column vector and v as a n x 1 column vector (which makes vT a
row vector). Forinstance, it m =4 and n = 3, then



Transpose of a Mafrix

In linear algebra, the transpose of a matrix A is another matrix AT (also written A’) created by any
one of the following equivalent actions:

« reflect A overits main diagonal (which runs from top-left to bottom-right) to obtain AT

« write the rows of A as the columns of AT

« write the columns of A as the rows of AT

Formally, the i-th row, j-th column element of AT is the j-th row, i-th column element of A:
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Determinant of a Matrix
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In linear algebra, the determinant is a useful value that can be computed from the elements of a
square matrix. The determinant of a matrix A is denoted det(A) or |A].
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User Command

The Aerial Robot Loop

Path Planning
Module

Flight Control
Module

o

= Reallife Aerial Robot
expressing its dynamic
behavior in response to
the control inputs and
external disturbances

»

Aerial Robot Real Motion Perception and
e, M State Estimation Module

A 4

| @

Section 1 of our course

Mission Results




Goal of this lecture

= The goal of this lecture is to derive the
equations of motion that describe the vy
moftion of a multirotor Micro Aerial Vehicle.

» The MAV has 6 Degrees of Freedom but
nly 4 distinct inputs (it can generate 3
moments and thrust force).

= |t is an underactuated system.
= To achieve this goal, we rely on:

=» A model of the Aerodynamic Forces &
Moments

= A model of the motion of the vehicle body
as actuated by the forces and moments
acting on if.

Recap of previous lecture: hittp://goo.gl/MfhLNR

J



http://goo.gl/MfhLNR

The MAYV Propeller

= Rotor modeling is a very complicated process.

= A Rotor is different than a propeller. It is not-rigid
and contains degrees of freedom. Among them
blade flapping allows the control of the rotor tip
path plane and therefore control the helicopter.

= Used to produce thrust. = Used to produce lift and

directional control.
= Propeller plane ,
. Elast [ f f |
perpendicular to shaft. =~ RS SHEESTEC (eleels
= Rigid blade. No flapping. = Blade flapping used to change

tip path plane.
= Fixed blade pitch angle or :
collective changes only. - Ev'%jsip'?gfeh Crele cemieled Loy




The MAYV Propeller

» Simplified model forces and moments:

= Thrust Force: the resultant of the vertical forces acting on
all the blade elements.

FT = — OT)OA(QR)Z

= Drag Moment. This moment about the rotor shaft is
caused by the aerodynamic forces acting on the blade
elements. The horizontal forces acting on the rotor are
multiplied by the moment arm and integrated over the
rotor. Drag moment determines the power required to
spin the rotor.

Mo = Q = CopA(QR)*R




MAYV Dynamics

What is the relation between the
propeller aerodynamic forces
and moments, the gravity force
and the motion of the aerial
robot?




MAYV Dynamics

Assumption 1: the Micro Aerial Vehicle is flying as @
rgid body with negligible aerodynamic effects on it —
for the employed airspeeds.

The propeller is considered as a simple propeller disc
that generates thrust and a moment around its shaft.

Recall:

FT =1 = OT)OA(QR)Z
Mo = Q = CopA(QR)*R

And let us write:




MAYV Dynamics

» We need to vehicle states to the inertial frame and
vice versa.




Reference Frame Rotatations

» Rotation around the k-axis
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Vehicle-1 Frame

p' =R,)pP, ]
cos® sinvy 0

R, = |—siny cosy 0
0 0 1

= y represents the yaw angle




Vehicle-2 Frame
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= ¢represents the pitch angle
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Body Frame

= ¢ represents the roll angle




Inertial Frame to Body Frame
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Rotation of Reference Frame

» Rotation around the i-axis

1 0 0
0 cosf sinf

0 —sinf cos@

RS =

Rotation around the j-axis

cos@ 0 —sinf |
Re=10 1 0 :
— 1
sinff 0 cosé ko_k1 Px 0
= Rotfation around the k-axis = Orthonormal matrix properties
- by\—1 b\T __ Pa
cos@ sinf 0 (R;a) g — Uf’a) =R,
Ry = |—sinf cosf 0 = RyRa’ =R,
0 0 1 = det(R2) =1




Further Application to Robot Kinematics

= [p,q,r] : body angular rates

= [u,v,w] : body linear velocities




Relate Translational Velocity-Position

= |ef [uv,w] represent the body linear velocities

d -pn- U . U
% Pe | = RE U]l = (Rv) %
| Pd_ = LY
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Body Rates — Euler Rates

= |et [p,q,r] denote the body angular rates
2 b 0 0
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= |nverting this expression:
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Translational Dynamics

=» Recall Newton's 2nd Law:

“Vg _¢
"

= f is the summary of all external forces

= mis the mass of the robot

= Time derivative is taken wrt the interial frame

= Using the expression:

dV,
dV, dV, LwixV, = m{—7 twy x V) =f

dtz dty,
= Which expressed in the body frame:
dVb
( d —I— wb/% X Vb) fb
Lo |



Translational Dynamics
= Recall Newton's 29 Law:
dV,
m—
dt;

= f is the summary of all external forces

=1

= mis the mass of the robot

= Time derivative is taken wrt the interial frame

= Time Derivatives in a Rotating Frame:

= |nfroduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.
As they rotate they will remain normalized. If we let them rotate at a speed Q about an axis 2
then each unit vector u of the rotating coordinate system abides by the rule:

d
au:ﬂxu




Translational Dynamics

= Time Derivatives in a Rotating Frame:

= |nfroduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.
As they rotate they will remain normalized. If we let them rotate at a speed Q about an axis 2
then each unit vector u of the rotating coordinate system abides by the rule:

iu:qu

dt
=» Then if we have a unit vector:

£(1) = £ (1)i +1,(1)) + £.(D)k

= To examine ifs first derivative — we have to use the producT rule of differentiation:

d dfa: fy dfz
af dt fa: + —- dt fy _|_ fz
d

= (), +ax]1




Translational Dynamics

= Time Derivatives in a Rotating Frame:

= |nfroduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.
As they rotate they will remain normalized. If we let them rotate at a speed Q about an axis 2
then each unit vector u of the rotating coordinate system abides by the rule:

iu:qu

dt
=» Then if we have a unit vector:

£(1) = £ (1)i +1,(1)) + £.(D)k

= To examine ifs first derivative — we have to use the producT rule of differentiation:

de_dfa fy dfz
af dt fa: + — dt fy fz
d

= 1), + @




Translational Dynamics

= As aresult: Relation Between Velocities in the Inertial & Rotating Frame

V_d
dt

= Then the relation of the velocity as expressed in the inertial frame and as expressed in the
rotating frame becomes:

= |etvbe the position of an object’s position:

V, =V, +Q Xp
= Similarly: Relation Between Accelerations in the Inertial & Rotating Frame

= |et abe the acceleration of an object’s position. Then:

= (), = (). = [, + 2] [(8), + @)
= Carrying out the differentiations: adQ

aT:ai—Qvar—Qx(pr)—%xp

= Subscripts i, r represent the inertial frame and the rotating frame respectively.




Translational Dynamics

=» Recall Newton's 2nd Law:

“Vg _¢
"

= f is the summary of all external forces

= mis the mass of the robot

= Time derivative is taken wrt the interial frame

= Using the expression:

dV,
dV, dV, LwixV, = m{—7 twy x V) =f

dtz dty,
= Which expressed in the body frame:
dVb
( d —I— wb/% X Vb) fb
Lo |



Translational Dynamics

dVb
(db —I—wb/zva) fb
=» Where
U b D b Vi
Vo= lv|,w,=|q| .=/
W 2l _fz_
» Therefore:
] Ty — q’w_ | -fx_
v| = |pw—ru| +—|f,
. m
w] L qu—pu_ e o




Rotational Dynamics

=» Recall Newton's 2nd Law:

dh
— — m

dt;

= his the angular momentum vector

= m is the summary of all external moments

= Time derivative is taken wrt the interial frame

» Therefore;
dh dh

qt  dry X m

= Which expressed in the body frame:

dh*

Wl x h? =m°
dtb b/1




Rotational Dynamics

= For arigid body, the angular momentum is defined as y
the product of the inertia matrix and the angular
velocity vector:

ere
| Ja: _Jazy _J:l:z-
J=|-To J, —Jy
__Ja:z _Jyz Jz i
= But as the multirotor MAV is symmetric:
J, 0 0]
J=1|0 J, 0
0 0 J.




Rotational Dynamics
= Replacing in:

dh®

—|—wb/% X hb — mb

dty
» Gives
dw?
J dtb/% -+ wb/% (Jwg/%) — mb —
b
Wy = I —wyys x (Jwyys) +m’)
= where .
' 4
Wh /i = q
r




Rotational Dynamics

= By setting the moments vector:

» /Then for the symmetric MAV, equation:

Wy = I =wyys x (Jwyys) +m)

= Becomes:
B[] [EM
q| = J epr |+ J_ley
I Jz"‘” pq| LM
: : 5




MAY Dynamics I

» To append the forces and moments we need to 1 -Q,
combine their formulation with 4 *C
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MAYV Dynamics

= MAV forces in the body frame:

Ja 0
=[] = 60
fl o Lim Ti
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MAYV Dynamics

= MAV forces in the body frame:

Ja 0
D im 1i

Mx | lCﬁO [
My = —ZSG() 0
_Mz_ L _km km

30°

60°
- 0 -
— ’Rz 0| ¥
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Relevant Research Study

Can we exploit the control allocation of a hexacopter MAV to provide tolerance against a motor failuree

Fast Nonlinear Model Predictive Control for Multicopter
Attitude Tracking on S0O(3)

Mina Kamel, Kostas Alexis, Markus Achtelik and Roland Siegwart
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Position tracking without one propeller
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Mina Kamel, Kostas Alexis, Markus Wilhelm Achtelik, Roland Siegwart, "Fast Nonlinear Model Predictive Control for Multicopter Attitude Tracking on
SO(3)", Multiconference on Systems and Control (MSC), 2015, Novotel Sydney Manly Pacific, Sydney Australia. 21-23 September, 2015




FiInd out more

» hitp://www.autonomousrobotslab.com/frame-rotations-and-representations.nhtmi

» hitp://page.math.tu-berlin.de/~plaue/plaue intro_gquats.pdf

®»  hitp://mathworld.wolfram.com/RotationMatrix.ntml

» http://mathworld.wolfram.com/EulerAngles.ntml

» hitp://blog.wolframalpha.com/2011/08/25/guaternion-properties-and-interactive-rotations-with-
wolframalpha/

ttp://www.mathworks.com/discovery/rotation-matrix.ntml

http://www.mathworks.com/discovery/quaternion.ntmlerefresh=true

http://www.cprogramming.com/tutorial/3d/rotationMatrices.hitml

http://www.cprogramming.com/tutorial/3d/quaternions.ntml

http://www.kostasalexis.com/multirotor-dynamics.html

S. Leutenegger,C. Huerzeler, A.K. Stowers, K. Alexis, M. Achtelik, D. Lentink, P. Oh, and R. Siegwart. "Flying
Robots", Handbook of Robotics.

http://www.kostasalexis.com/simulations-with-simpy.himl

MATLAB Demo: hitp://www.mathworks.com/help/aeroblks/examples/quadcopter-
project.ntmlerefresh=true

Quick Help with Linear Algebra? https://www.khanacademy.org/math/linear-algebra

Quick Help with Differential Equations? https://www.khanacademy.org/math/differential-equations

Always check: http://www.kostasalexis.com/literature-and-links.html



http://www.autonomousrobotslab.com/frame-rotations-and-representations.html
http://page.math.tu-berlin.de/~plaue/plaue_intro_quats.pdf
http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/EulerAngles.html
http://blog.wolframalpha.com/2011/08/25/quaternion-properties-and-interactive-rotations-with-wolframalpha/
http://www.mathworks.com/discovery/quaternion.html?refresh=true
http://www.mathworks.com/discovery/quaternion.html?refresh=true
http://www.cprogramming.com/tutorial/3d/rotationMatrices.html
http://www.cprogramming.com/tutorial/3d/quaternions.html
http://www.kostasalexis.com/multirotor-dynamics.html
http://www.kostasalexis.com/simulations-with-simpy.html
http://www.mathworks.com/help/aeroblks/examples/quadcopter-project.html?refresh=true
https://www.khanacademy.org/math/linear-algebra
https://www.khanacademy.org/math/differential-equations
http://www.kostasalexis.com/literature-and-links.html

Course Projects

Those arranged: an extra e-mail to finalize the topic of the project

Those that have not arranged yet: hurry up ©

System Design

Modeling

Estimation

Flight Control

Lol

Path Planning

8
O
i G
8 i
g g

/ -

~200

150

3 100

= -0

150 7"""*77,A =l
100 B el
o -8
z < 100

Perception

Relevant Web link: http://www.autonomousroboftsiab.com/student-projects.ntml



http://www.autonomousrobotslab.com/student-projects.html

Simulation Tools

ETH-urich

CS491/CS691: Infroduction to Aerial Robotics
RotorS Aerial Robots Simulator
https://github.com/ethz-asl/rotors_simulator

Dr. Kostas Alexis, University of Nevada, Reno, www.kostasalexis.com @

Mass-Spring System

TN NN T hitp://www.autonomousrobofslab
.com/rotors-simulator2.html
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http://www.autonomousrobotslab.com/rotors-simulator2.html
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