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Elementary Background

 Linear Algebra

 Critical background

 Good overview: CS479/679: Pattern Recognition :: Review of Linear Algebra

 We will summarize a few very common operations

 Differential Equations

 Critical background

 Good online course: Introduction to Diff Eq :: Boston University

 Numerical tools

 Mostly MATLAB or Python for a smooth learning curve

 http://www.kostasalexis.com/simulation-tools.html

http://www.kostasalexis.com/simulation-tools.html


Dot Product of 2 vectors

 Let:

 Then:

The dot product or scalar product (sometimes inner product in the context of Euclidean space, or rarely projection
product for emphasizing the geometric significance), is an algebraic operation that takes two equal-length
sequences of numbers (usually coordinate vectors) and returns a single number.



Cross Product of 2 vectors

 Let:

 Then:

The cross product or vector product (occasionally directed area product to emphasize the geometric significance)
is a binary operation on two vectors in three-dimensional space (R3) and is denoted by the symbol ×. Given two
linearly independent vectors u and v, the cross product, u × v, is a vector that is perpendicular to both and
therefore normal to the plane containing them. It has many applications in mathematics, physics, engineering, and

computer programming. It should not be confused with dot product (projection product).



Outer Product of 2 vectors

 Let:

 Then:

The outer product u ⊗ v is equivalent to a matrix multiplication uvT, provided that u is

represented as a m × 1 column vector and v as a n × 1 column vector (which makes vT a

row vector). For instance, if m = 4 and n = 3, then



Transpose of a Matrix

In linear algebra, the transpose of a matrix A is another matrix AT (also written A’) created by any 
one of the following equivalent actions:

• reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain AT 

• write the rows of A as the columns of AT 

• write the columns of A as the rows of AT 

Formally, the i-th row, j-th column element of AT is the j-th row, i-th column element of A:

Example:



Determinant of a Matrix

In linear algebra, the determinant is a useful value that can be computed from the elements of a 

square matrix. The determinant of a matrix A is denoted det(A) or |A|.

Rule of Sarrus



The Aerial Robot Loop

 Real-life Aerial Robot
expressing its dynamic
behavior in response to
the control inputs and
external disturbances

Section 1 of our course



Goal of this lecture

 The goal of this lecture is to derive the

equations of motion that describe the

motion of a multirotor Micro Aerial Vehicle.

 The MAV has 6 Degrees of Freedom but

only 4 distinct inputs (it can generate 3

moments and thrust force).

 It is an underactuated system.

 To achieve this goal, we rely on:

 A model of the Aerodynamic Forces &

Moments

 A model of the motion of the vehicle body

as actuated by the forces and moments

acting on it.

Recap of previous lecture: http://goo.gl/MfhLNR

http://goo.gl/MfhLNR


The MAV Propeller

 Rotor modeling is a very complicated process.

 A Rotor is different than a propeller. It is not-rigid

and contains degrees of freedom. Among them

blade flapping allows the control of the rotor tip

path plane and therefore control the helicopter.

 Used to produce lift and
directional control.

 Elastic element between blade
and shaft.

 Blade flapping used to change
tip path plane.

 Blade pitch angle controlled by
swashplate.

 Used to produce thrust.

 Propeller plane
perpendicular to shaft.

 Rigid blade. No flapping.

 Fixed blade pitch angle or
collective changes only.



The MAV Propeller

 Simplified model forces and moments:

 Thrust Force: the resultant of the vertical forces acting on

all the blade elements.

 Drag Moment: This moment about the rotor shaft is

caused by the aerodynamic forces acting on the blade

elements. The horizontal forces acting on the rotor are

multiplied by the moment arm and integrated over the

rotor. Drag moment determines the power required to

spin the rotor.



MAV Dynamics

What is the relation between the 

propeller aerodynamic forces 

and moments, the gravity force 

and the motion of the aerial 

robot?



MAV Dynamics

 Assumption 1: the Micro Aerial Vehicle is flying as a

rigid body with negligible aerodynamic effects on it –

for the employed airspeeds.

 The propeller is considered as a simple propeller disc

that generates thrust and a moment around its shaft.

 Recall:

 And let us write:



MAV Dynamics

 We need to vehicle states to the inertial frame and

vice versa.



Reference Frame Rotatations

 Rotation around the k-axis



Vehicle-1 Frame

 ψ represents the yaw angle



Vehicle-2 Frame

 θ represents the pitch angle



Body Frame

 φ represents the roll angle



Inertial Frame to Body Frame

 Let:

 Then:



Rotation of Reference Frame

 Rotation around the i-axis

 Rotation around the j-axis

 Rotation around the k-axis  Orthonormal matrix properties









Further Application to Robot Kinematics

 [p,q,r] : body angular rates

 [u,v,w] : body linear velocities



Relate Translational Velocity-Position

 Let [u,v,w] represent the body linear velocities

 Which gives:



Body Rates – Euler Rates

 Let [p,q,r] denote the body angular rates

 Inverting this expression:



Translational Dynamics

 Recall Newton’s 2nd Law:

 f is the summary of all external forces

 m is the mass of the robot

 Time derivative is taken wrt the interial frame

 Using the expression:

 Which expressed in the body frame:



Translational Dynamics

 Recall Newton’s 2nd Law:

 f is the summary of all external forces

 m is the mass of the robot

 Time derivative is taken wrt the interial frame

 Time Derivatives in a Rotating Frame:

 Introduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.

As they rotate they will remain normalized. If we let them rotate at a speed Ω about an axis Ω

then each unit vector u of the rotating coordinate system abides by the rule:



Translational Dynamics
 Time Derivatives in a Rotating Frame:

 Introduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.

As they rotate they will remain normalized. If we let them rotate at a speed Ω about an axis Ω

then each unit vector u of the rotating coordinate system abides by the rule:

 Then if we have a unit vector:

 To examine its first derivative – we have to use the product rule of differentiation:



Translational Dynamics
 Time Derivatives in a Rotating Frame:

 Introduce the unit vectors i,j,k representing standard unit basis vectors in the rotating frame.

As they rotate they will remain normalized. If we let them rotate at a speed Ω about an axis Ω

then each unit vector u of the rotating coordinate system abides by the rule:

 Then if we have a unit vector:

 To examine its first derivative – we have to use the product rule of differentiation:



Translational Dynamics
 As a result: Relation Between Velocities in the Inertial & Rotating Frame

 Let v be the position of an object’s position:

 Then the relation of the velocity as expressed in the inertial frame and as expressed in the

rotating frame becomes:

 Similarly: Relation Between Accelerations in the Inertial & Rotating Frame

 Let a be the acceleration of an object’s position. Then:

 Carrying out the differentiations:

 Subscripts i, r represent the inertial frame and the rotating frame respectively.



Translational Dynamics

 Recall Newton’s 2nd Law:

 f is the summary of all external forces

 m is the mass of the robot

 Time derivative is taken wrt the interial frame

 Using the expression:

 Which expressed in the body frame:



Translational Dynamics

 Where

 Therefore:



Rotational Dynamics

 Recall Newton’s 2nd Law:

 h is the angular momentum vector

 m is the summary of all external moments

 Time derivative is taken wrt the interial frame

 Therefore:

 Which expressed in the body frame:



Rotational Dynamics

 For a rigid body, the angular momentum is defined as

the product of the inertia matrix and the angular

velocity vector:

 where

 But as the multirotor MAV is symmetric:



Rotational Dynamics

 Replacing in:

 Gives:

 where



Rotational Dynamics

 By setting the moments vector:

 Then for the symmetric MAV, equation:

 Becomes:



MAV Dynamics
 To append the forces and moments we need to

combine their formulation with

 Next step: append the MAV forces

and moments



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



Relevant Research Study
 Can we exploit the control allocation of a hexacopter MAV to provide tolerance against a motor failure?

Mina Kamel, Kostas Alexis, Markus Wilhelm Achtelik, Roland Siegwart, "Fast Nonlinear Model Predictive Control for Multicopter Attitude Tracking on
SO(3)", Multiconference on Systems and Control (MSC), 2015, Novotel Sydney Manly Pacific, Sydney Australia. 21-23 September, 2015



Find out more

 http://www.autonomousrobotslab.com/frame-rotations-and-representations.html

 http://page.math.tu-berlin.de/~plaue/plaue_intro_quats.pdf

 http://mathworld.wolfram.com/RotationMatrix.html

 http://mathworld.wolfram.com/EulerAngles.html

 http://blog.wolframalpha.com/2011/08/25/quaternion-properties-and-interactive-rotations-with-
wolframalpha/

 http://www.mathworks.com/discovery/rotation-matrix.html

 http://www.mathworks.com/discovery/quaternion.html?refresh=true

 http://www.cprogramming.com/tutorial/3d/rotationMatrices.html

 http://www.cprogramming.com/tutorial/3d/quaternions.html

 http://www.kostasalexis.com/multirotor-dynamics.html

 S. Leutenegger,C. Huerzeler, A.K. Stowers, K. Alexis, M. Achtelik, D. Lentink, P. Oh, and R. Siegwart. "Flying
Robots", Handbook of Robotics.

 http://www.kostasalexis.com/simulations-with-simpy.html

 MATLAB Demo: http://www.mathworks.com/help/aeroblks/examples/quadcopter-
project.html?refresh=true

 Quick Help with Linear Algebra? https://www.khanacademy.org/math/linear-algebra

 Quick Help with Differential Equations? https://www.khanacademy.org/math/differential-equations

 Always check: http://www.kostasalexis.com/literature-and-links.html

http://www.autonomousrobotslab.com/frame-rotations-and-representations.html
http://page.math.tu-berlin.de/~plaue/plaue_intro_quats.pdf
http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/EulerAngles.html
http://blog.wolframalpha.com/2011/08/25/quaternion-properties-and-interactive-rotations-with-wolframalpha/
http://www.mathworks.com/discovery/quaternion.html?refresh=true
http://www.mathworks.com/discovery/quaternion.html?refresh=true
http://www.cprogramming.com/tutorial/3d/rotationMatrices.html
http://www.cprogramming.com/tutorial/3d/quaternions.html
http://www.kostasalexis.com/multirotor-dynamics.html
http://www.kostasalexis.com/simulations-with-simpy.html
http://www.mathworks.com/help/aeroblks/examples/quadcopter-project.html?refresh=true
https://www.khanacademy.org/math/linear-algebra
https://www.khanacademy.org/math/differential-equations
http://www.kostasalexis.com/literature-and-links.html


Course Projects

System Design Modeling Estimation Flight Control Path Planning Perception

Those arranged: an extra e-mail to finalize the topic of the project

Those that have not arranged yet: hurry up 

Relevant Web link: http://www.autonomousrobotslab.com/student-projects.html

http://www.autonomousrobotslab.com/student-projects.html


Simulation Tools

http://www.autonomousrobotslab

.com/rotors-simulator2.html

http://www.autonomousrobotslab.com/rotors-simulator2.html


Thank you! 
Please ask your question!


