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World state (or system state)

 Belief state:

 Our belief/estimate of the world state

 World state:

 Real state of the robot in the real world

Parts of this talk are inspired from the edX lecture “Autonomous Navigation for Flying Robots” from TUM



State Estimation

 What parts of the world state are (most) relevant for a flying robot?

 Position

 Velocity

 Orientation

 Attitude rate

 Obstacles

 Map

 Positions and intentions of other robots/human beings

 …



State Estimation

 Cannot observe world state directly

 Need to estimate the world state

 But How?

 Infer world state from sensor data

 Infer world state from executed motions/actions



Sensor Model

 Robot perceives the environment through its sensors:

 Where z is the sensor reading, h is the world state.

 Goal: Infer the state of the world from sensor readings.



Motion Model

 Robot executes an action (or control) u

 e.g: move forward at 1m/s

 Update belief state according to the motion model:

 Where x’ is the current state and x is the previous state.



Probabilistic Robotics

 Sensor observations are noisy, partial, potentially missing.

 All models are partially wrong and incomplete.

 Usually we have prior knowledge.



Probabilistic Robotics

 Probabilistic sensor models:

 Probabilistic motion models:

 Fuse data between multiple sensors (multi-modal):

 Fuse data over time (filtering):
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Probability theory

 Random experiment that can produce a number of outcomes, e.g. a rolling

dice.

 Sample space, e.g.: {1,2,3,4,5,6}

 Event A is subset of outcomes, e.g. {1,3,5}

 Probability P(A), e.g. P(A)=0.5



Axioms of Probability theory









Discrete Random Variables

 X denotes a random variable

 X can take on a countable number of values in {x1,x2,…,xn}

 P(X=xi) is the probability that the random variable X takes on value xi

 P(.) is called the probability mass function

 Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,

kitchen



Continuous Random Variables

 X takes on continuous values.

 P(X=x) or P(x) is called the probability density function (PDF).

 Example:

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005



Proper Distributions Sum To One

 Discrete Case

 Continuous Case



Joint and Conditional Probabilities



 If X and Y are independent then:

 Is the probability of x given y

 If X and Y are independent then:



Conditional Independence

 Definition of conditional independence:

 Equivalent to:

 Note: this does not necessarily mean that:



Marginalization

 Discrete case:

 Continuous case:



Marginalization example



Expected value of a Random Variable

 Discrete case:

 Continuous case:

 The expected value is the weighted average of all values a random variable

can take on.

 Expectation is a linear operator:



Covariance of a Random Variable

 Measures the square expected deviation from the mean:



Estimation from Data

 Observations:

 Sample Mean:

 Sample Covariance:
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The State Estimation problem

 We want to estimate the world state x from:

 Sensor measurements z and

 Controls u

 We need to model the relationship between these random variables, i.e:



Causal vs. Diagnostic Reasoning

Is diagnostic

Is causal

 Diagnostic reasoning is typically what we need.

 Often causal knowledge is easier to obtain.

 Bayes rule allows us to use causal knowledge in diagnostic reasoning.



Bayes rule

 Definition of conditional probability:

 Bayes rule:

Observation likelihood Prior on world state

Prior on sensor observations



Normalization

 Direct computation of P(z) can be difficult.

 Idea: compute improper distribution, normalize afterwards.

 STEP 1:

 STEP 2:

 STEP 3:



Normalization

 Direct computation of P(z) can be difficult.

 Idea: compute improper distribution, normalize afterwards.

 STEP 1:

 STEP 2:

 STEP 3:



Example: Sensor Measurement

 Quadrotor seeks the Landing Zone

 The landing zone is marked with many bright lamps

 The quadrotor has a light sensor.



Example: Sensor Measurement

 Binary sensor

 Binary world state

 Sensor model

 Prior on world state

 Assume: robot observes light, i.e.

 What is the probability that

the robot is above the landing zone.



Example: Sensor Measurement

 Sensor model:

 Prior on world state:

 Probability after observation (using Bayes):
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Markov Assumption

 Observations depend only on current state

 Current state depends only on previous state and current action



Markov Chain

 A Markov Chain is a stochastic process where, given the present state, the

past and the future states are independent.



Underlying Assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors



Bayes Filter

 Given

 Sequence of observations and actions:

 Sensor model:

 Action model:

 Prior probability of the system state:

 Desired

 Estimate of the state of the dynamic system:

 Posterior of the state is also called belief:



Bayes Filter Algorithm

 For each time step, do:

 Apply motion model:

 Apply sensor model:

 η is a normalization factor to ensure that the probability is maximum 1.



Notes

 Bayes filters also work on continuous state spaces (replace sum by integral).

 Bayes filter also works when actions and observations are asynchronous.



Example: Localization

 Discrete state:

 Belief distribution can be represented as a grid

 This is also called a historigram filter



Example: Localization

 Action:

 Robot can move one cell in each time step

 Actions are not perfectly executed



Example: Localization

 Action

 Robot can move one cell in each time step

 Actions are not perfectly executed

 Example: move east

 60% success rate, 10% to stay/move too far/ move one up/ move one down



Example: Localization

 Binary observation:

 One (special) location has a marker

 Marker is sometimes also detected in neighboring cells



Example: Localization

 Let’s start a simulation run…



Example: Localization

 t=0

 Prior distribution (initial belief)

 Assume that we know the initial location (if not, we could initialize with a

uniform prior)



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 2: Apply observation model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 2: Apply observation model

 Question: where is the robot?
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Kalman Filter

 Bayes filter is a useful tool for state estimation.

 Histogram filter with grid representation is not very efficient.

 How can we represent the state more efficiently?



Kalman Filter

 Bayes filter with continuous states

 State represented with a normal distribution

 Developed in the late 1950’s. A cornerstone. Designed and first application:

estimate the trajectory of the Apollo missiles.

 Kalman Filter is very efficient (only requires a few matrix operations per time

step).

 Applications range from economics, weather forecasting, satellite

navigation to robotics and many more.



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian



Linear Process Model
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 Assume that the system evolves linearly over time, then



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction



Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n

 Optimal for linear Gaussian systems

 But most robots are nonlinear! This is why in practice we use Extended Kalman

Filters and other approaches.



Python KF Implementation

http://www.kostasalexis.com/the-kalman-filter.html

http://www.kostasalexis.com/the-kalman-filter.html


Assignment 1: Estimating a Random Constant

 The goal of this task is to estimate a scalar random constant, which may be a voltage level.
Let's assume that we have the ability to take measurements of the constant, but that the
measurements are corrupted by 0.1 Volt RMS white measurement noise (e.g. our analog to
digital converter is not very accurate). In this example, the process is governed by the linear
difference equation:

 with a measurement z that is:

 The state does not change from step to step, this is why A=1. There is no control input,
therefore B =0,u=0. Our noisy measurement, directly measures the state - therefore H=1.
Notice that the subscript k was dropped in several places because the respective
parameters remain constant in our simple model.

 Programming Language: preferably one Python, MATLAB, C++, or JAVA

 Form of the Report: 1. Brief report with the code and the relevant plots indicating the correct estimate
of the constant, 2. Comments on what you understood about the filter operation.

 Deadline: March 11, 2016



Assignment 1 – Bonus: Develop an EKF to estimate the attitude of the UAV 

based on its IMU data

 Use the IMU data that you can download following this URL, and develop an Extended

Kalman Filter solution to estimate the attitude of the aerial robot. For your

development you can use any of the following languages: C++, Python, MATLAB Note

that the data are available in the form of a ROS bag. The IMU data are collected

using the VI-Sensor on-board the Firefly MAV.

 ROSBAG with IMU Data: Download

 Programming Language: C++, Python, MATLAB

 Deadline: March 18, 2016



Find out more

 http://www.kostasalexis.com/the-kalman-filter.html

 http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullV

ersion.pdf

 http://www.cs.unc.edu/~welch/kalman/

 http://home.wlu.edu/~levys/kalman_tutorial/

 https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

 http://www.kostasalexis.com/literature-and-links.html

http://www.kostasalexis.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.kostasalexis.com/literature-and-links.html


Thank you! 
Please ask your question!


