CS491/691: Infroduction 1o Aerial Robotics

Topic: State Estimation - Coding Examples

Dr. Kostas Alexis (CSE)

\

Kalman Filter Design in MATLAB

x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

» Where: A =[1.1269 -0.4940 ©.1129,
1.0000 0 0,
@ 1.0000 e];

B = [-0.3832
9.5919
©.5191];

C:[lae];

D = 9;

Kalman Filter Design in MATLAB

= Design of a Steady-State Kalman Filter: derive the optimal filter gain M based
on the process noise covariaonce Q and the sensor noise coviariance R.

= Step 1: Plan definition

Plant = ss(A,[B B],C,@,-1, "inputname’,{'u' 'w'}, 'outputname’,'y');

» Step 2: Covariance information

Q = 2.3; % A number greater than zero

R =1; % A number greater than zero

Kalman Filter Design in MATLAB

» Step 3: Design the steady-state Kalman Filter

ime-update x(n + 1|n) = Ax(n|n — 1) + Bu(n)
Measurement Update X(n|n) = x(njn — 1) + M(yy(n) — Cx(njn — 1))

= Ask MATLAB to compute the Kalman gain for you

[kalmf,L,~,M,Z] = kalman(Plant,Q,R);

kalmf = kalmf(1,:);

M, % innovation gain

= M =[0.5345, 0.0101, -0.4776]"

Kalman Filter Design in MATLAB

= Filfer — System Block diagram:

noise noise

u Y.
o Plant

Filter ——p

Kalman Filter Design in MATLAB

» Step 4: Simulate the system connected with the filter

% First, build a complete plant model with u,w,v as inputs and
% y and yv as outputs:

= A;

[B B 8*B]:

[c:c]:

[e@e;00 1];
ss(a,b,c,d, -1, "inputname’, {

T a0 o o
||

u' ‘'w' 'v'},'outputname',{'y’ ‘yv'});

sys = parallel(P,kalmf,1,1,[1,[1);

SimModel
SimModel

feedback(sys,1,4,2,1);
SimModel([1 3],[1 2 3]); % Delete yv form I/0

Kalman Filter Design in MATLAB

= Step 4: Create the block diagram in MATLAB

% First, build a complete plant model with u,w,v as inputs and
% y and yv as outputs:

a = A;

b = [B B ©*B];

c = [C;C];

d=[e0e;001];

P = ss(a,b,c,d,-1, "inputname’, {

u' ‘'w' 'v'},'outputname',{'y’ ‘yv'});

sys = parallel(P,kalmf,1,1,[1,[1);

SimModel
SimModel

feedback(sys,1,4,2,1);
SimModel([1 3],[1 2 3]); % Delete yv form I/0

Kalman Filter Design in MATLAB

» Step 4: Conduct simulation

» |nsert time data and input data

t = (0:100)";

sin(t/5);

= |nsert process noise data

rng(1e, "twister');
w = sqrt(Q)*randn(length(t),1);
v = sqrt(R)*randn(length(t),1);

= Forward simulate
out = lsim(SimModel, [w,v,ul);

y = out(:,1); % true response
ye = out(:,2); % filtered response
yv =y + Vv; % measured response

Kalman Filter Design in MATLAB

= Step 5: Visualize and compare the results

clf

subplot(211), plot(t,y,'b',t,ye,'r--"),
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'g',t,y-ye, 'r--"),
xlabel('No. of samples'), ylabel('Error')

Kalman Filter Design in MATLAB

= Step 5: Visualize and compare the results

Kalman filter response

/'\/l\

\

v

No. of samples

Kalman Filter Design in MATLAB

= Step 5: Visualize and compare the results

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

» MassErrCov =0.9871
» EstErrCov =0.3479

Kalman Filter Design in MATLAB

= Design of a Time-Varying Kalman Filter. A time-varying Kalman filter can
perform well even when the noise covariance is not stationary. The time-
varying KF is governed by:

x(n + 1|n) = Ax(n|n) + Bu(n)
P(n +1|n) = AP(n|n)AT + BQB’
X(

Time update

Measurement update Z’L n) = x(n|n — 1) + M(n)(y.(n) — Cx(n|n — 1))

M(n) = P(n|n — 1)C*(CP(n|n — 1)C* + R)
P(njn) = (I —-M(n)C)P(n|n —1)

Kalman Filter Design in MATLAB

» Step +1: Generate the noisy plant response

sys = ss(A,B,C,D,-1);
y = lsim(sys,u+w); % w = process noise
YV =y + V; % VvV = meas. noise

Kalman Filter Design in MATLAB

» Step +2: Implement Filter Recursions in a FOR loop

P=B*Q*B'; % Initial error covariance
x=zeros(3,1); % Initial condition on the state
ye = zeros(length(t),1);

ycov = zeros(length(t),1);

errcov = zeros(length(t),1);

for i=1:length(t)
% Measurement update
Mn = P*C'/(C*P*C'+R);
X = X + Mn*(yv(i)-C*x); % x[n|n]
P = (eye(3)-Mn*C)*P; % P[n|n]

ye(i) = C*x;
errcov(i) = C*P*C';

% Time update

x = A*x + B*u(i); % x[n+l|n]

P = A*P*A' + B*Q*B'; % P[n+1|n]
end

Kalman Filter Design in MATLAB

» Step +3: Compare the frue response with the filtered response

subplot(211), plot(t,y,'b',t,ye,'r--"),
xlabel('No. of samples'), ylabel('Output')
title('Response with time-varying Kalman filter')
subplot(212), plot(t,y-yv,'g',t,y-ye,'r--"),
xlabel('No. of samples'), ylabel('Error')

Kalman Filter Design in MATLAB

» Step +3: Compare the frue response with the filtered response

Response with time-varying Kalman filter
I

] I
A

Output
A & A 4 o 2 0N v oa

) 10 20 30 40 50 60 70 80 90 100

T
I I

0 10 20 30 40 50 60 70 80 90 100

Parts of this talkare inspired from the edX lecture "Autonomous Navigation for Flying Robots™ from TUM @

Kalman Filter Design in MATLAB

= Step +4: The time varying filter also estimates the output covariance during
the estimation. Plot the output covariance to see if the filter has reached
steady state (as we would expect with stationary input noise)

subplot(211)
plot(t,errcov), ylabel('Error Covar'),

Kalman Filter Design in MATLAB

= Step +4: The time varying filter also estimates the output covariance during
the estimation. Plot the output covariance to see if the filter has reached
steady state (as we would expect with stationary input noise)

085 — T T T T T

I E——
[s |

Kalman Filter Design in MATLAB

» Step +5: Compare covariance errors

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye,

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

» MeaskErrCov =0.9871
» EstErrCov =0.3479

Track a Train using the Kalman Filter

= Problem statement: Predict the position and velocity of a moving tfrain 2
seconds ahead, % having noisy measurements of its positions along the
previous 10 seconds (10 samples a second).

Based on: Alex Blekhman, An Intuitive Infroduction to Kalman Filter @

Track a Train using the Kalman Filter

= Ground Truth: The train is initially located at the point x = 0 and moves along
the X axis with constant velocity V = 10m/sec, so the motion equation of the
train is X = X0 + V*t. Easy to see that the position of the train after 12 seconds
will be x = 120m, and this is what we will try to find.

Track a Train using the Kalman Filter

= Approach: We measure (sample) the position of the train every dt = 0.1
seconds. But, because of imperfect apparature, weather etfc., our
measurements are noisy, so the instantaneous velocity, derived from 2
consecutive position measurements (remember, we measure only position) is
innacurate. We will use Kalman filter as we need an accurate and smooth

stimate for the velocity in order to predict train's position in the future.

x.

We assume that the measurement noise is
normally distributed, with mean 0 and
standard deviation SIGMA

Track a Train using the Kalman Filter

= Ground truth

S EA A A A AR A AR AR A AR AR R R R R]
$%% Ground truth FT33FTFTTTETETEETTETTTTEES
BEET T T LT LTI L LA L T EETL AR TEEEES

% Set true trajectory
Nsamples=100;

dt = .1;
t=0:dt:dt*Nsamples;
Vtrue = 10;

% Xtrue is a vector of true positions of the train
¥initial = 07
¥true = Xinitial + Vtrue * t;

Track a Train using the Kalman Filter

= Motion Equations

I TR LI L LI LTI TR EEYY
%% Motion equations $%%%%%%5%355%%5%%5%%
TR I AT TSI TR E I TR EERS

% Previous state (initial guess): Our guess is that the train starts at 0 with velocity
% that equals to 50% of the real wvelocity
Xk prev = [0;

.5*Vtrue] ;

% Current state estimate
Xk=[1:

% Motion equation: Xk = Phi*Xk prev + Noise, that is Xk(n) = Xk(n-1) + Vk(n-1) * dt
% Of course, V is not measured, but it is estimated
% Phi represents the dynamics of the system: it is the motion equation
Phi = [1 dt;
o 11:

Partsof this talk are inspired from the edX lecture "Autonomous Navigation for Flying Robots™ from TUM @

Track a Train using the Kalman Filter

= Motion Equations

% Motion equation: Xk = Phi*Xk prev + Noise, that is Xk(n) = Xk(n-1) + Vk(n-1) * dt
% 0Of course, V is not measured, but it is estimated
% Phi represents the dynamics of the system: it is the motion equation
Phi = [1 dt;
0 11:

% The error matrix (or the confidence matrix): P states whether we should
% give more weight to the new measurement or to the model estimate

sigma model = 1;

$ P = s5igma”2*G*G';

P = [sigma model”2 0:

0 sigma model~2];

% Q is the process noise covariance. It represents the amount of
% uncertainty in the model. In our case, we arbitrarily assume that the model is perfect (no
% acceleration allowed for the train, or in other words - any acceleration is considered to be a noise)
Qg = [0 0;
0 01
$ M is the measurement matrix.
% We measure ¥, 50 M(1) =1
% We do not measure V, so M(2)= 0
M= [10]1;

% R 1s the measurement noise covariance. Generally R and sigma meas can
$ vary between samples.

sigma meas = 1; % 1 m/sec

R = sigma meas”2;

Track a Train using the Kalman Filter

R AR RA A A A AR R A A A R R AR AL AR R R

» qumqn "erdﬁons $2% Kalman iteration £%%%%%2%39%2%%3%%%%

FEEE e EE e T e R T T TR TS EEE5S

% Buffers for later display

Xk buffer = zeros(2,Nsamples+1);
Xk buffer(:,1) = Xk prev;

Z buffer = zeros(l,Nsamples+l1);

[-]for k=1l:Nsamples

% Z is the measurement vector. In our

% case, Z = TrueData + RandomGaussianNoise
Zz = Xtrue(k+1l)+sigma meas*randn;

Z buffer(k+1) = Z;

% Kalman iteration
Pl = Phi*P#*Phi' + Q;
S = M*pPl*M' + R;

% K is Kalman gain. If K is large, more weight goes to the measurement.
% If K i5 low, more weight goes to the model prediction.

K = P1*M'*inv(S);

P = Pl - K*M*P1;

Xk = Phi*Xk prev + K* (Z-M*Phi*Xk prev);
Xk buffer(:,k+1) = Xk:

% For the next iteration
Xk prev = Xk;

—end;

Track a Train using the Kalman Filter

= Position Analysis

SRR R R R R R AR b bR R R R R e
%%% Position analysis %%%%%%%%%%%%%%%%%%
SRR R R R R R AR b bR R R R R e

figure;

plot(t,Xtrue, 'g");

hold on;

plot(t,Z buffer,'c');

plot(t,Xk buffer(l,:), 'm");
title('Position estimation results'):
xlabel ('Time (s)'):

ylabel ('Position (m)');

legend('True position', 'Measurements', 'Kalman estimated displacement');

Track a Train using the Kalman Filter

= Position Analysis

rrrrrrrrrrr

Track a Train using the Kalman Filter

= Velocity Analysis

O E T TR T E R IR R IR REE RS
$%% Velocity analysis $%%%%%%%%5%%%%%%%%%
SRR AR A AR A AR A AR AR AR AR AR R R AR R R

% The instantaneous velocity as derived from 2 consecutive position
% measurements
InstantaneousVelocity = [0 (Z_buffer(2:Nsamples+1)-Z buffer(l:Nsamples))/dtl;

% The instantaneous velocity as derived from running average with a window

% of 5 samples from instantaneous velocity

WindowSize = 5;

InstantaneousvelocityRunningAverage = filter(ones(l,WindowSize) /WindowSize, 1, Instantaneousvelocity):;

figure;

plot(t,ones(size(t))*Vtrue, 'm");

hold ongy

plot (t, Instantaneousvelocity, 'qg');

plot(t, InstantaneousVelocityRunningAverage, 'c');

plot (t,Xk buffer(2,:),'k"):

title('Velocity estimation results');

xlabel ('Time (s)'):

ylabel ("Velocity (m/s)'):

legend ('True velocity','Estimated wvelocity by raw consecutive samples','Estimated velocity by running average', 'Estimated wvelocity by Kalman filter');

Track a Train using the Kalman Filter

= Velocity Analysis

Velocity estimation results

50 T I
True velocity
Estimated velocity by raw consecutive samples
Estimated velocity by running average
Estimated velocity by Kalman filter
40 — —
|
30 — —
| |
20 |— —
z
£
210 — i ——
g AT
k=) \ St
3 ——
< AN
0i— _
|
-10
| |
20— —
30 | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (s)

Track a Train using the Kalman Filter

= Exirapolation ahead

SRR R R AR R R R R AR R R R R R R R R R R R R R AR R
%$%% Extrapolation 20 samples ahead %%%%%
P I T I LTI L I I LI LI LI

SamplesIntoTheFuture = 20;
Nlast = 10; % samples

% We take the last Nlast = 10 samples, and for each of these samples we try to see what would be the
% estimated position of the train at sample number Nsamples + SamplesIntoTheFuture

% 1f we took the position and the velocity that was known at that sample

TruePositionInTheFuture = Xinitial + (Nsamples + SamplesIntoTheFuture) * Vtrue * dt;

ProjectedPositionByRunningAverage = Xk buffer(l, (Nsamples+l-Nlast) : (Nsamples+1)) +
((SamplesIntoTheFuture+Nlast) :-1:SamplesIntoTheFuture) .* dt .* InstantaneousvVelocityRunningAverage ((Nsamples+1-Nlast) : (Nsamples+1));

ProjectedPositionByKalmanFilter = Xk buffer(l, (Nsamples+1-Nlast): (Nsamples+1l)) +
({(SamplesIntoTheFuture+Nlast) :-1:SamplesIntoTheFuture) .* dt .* Xk buffer (2, (Nsamples+1-Nlast) : (Nsamples+1l)):

figure;

plot (((Nsamples+1-Nlast) : (Nsamples+1)) *dt,ones(size(1:11)) *TruePositionInTheFuture, 'm');

hold on;

plot (((Nsamples+1-Nlast) : (Nsamples+1)) *dt, ProjectedPositionByRunninghAverage, 'c');

plot (((Nsamples+1-Nlast) : (Nsamples+1)) *dt, ProjectedPositionByKalmanFilter, "'k');

title(['Extrapolation 20 samples ahead (at t = ' num2str((Nsamples + SamplesIntoTheFuture) * dt) ")'1);
xlabel ('Time of sample used for extrapolation (s5)");

ylabel ('Expected position (m)");

legend('True position','Estimated position by running average', 'Estimated position by Kalman filter'):;

Track a Train using the Kalman Filter

= Exirapolation ahead

Extrapolation 20 samples ahead (at t = 12)
130 I ‘

True position
Estimated position by running average
Estimated position by Kalman filter

Expected position (m)
o

110 |— -

105 — —

100 I | | | |
9 9.2 9.4 96 9.8 10 10.2
Time of sample used for extrapolation (s)

FiInd out more

http://www.kostasalexis.com/the-kalman-filter.ntml

http://aerostudents.com/files/probability AndStatistics/probabilityTheoryFull vV
ersion.pdf

http://www.cs.unc.edu/~welch/kalman/

ttp://home.wlu.edu/~levys/kalman tutorial/

https://qithub.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

http://www.kostasalexis.com/literature-and-links.hitm|

http://www.kostasalexis.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.kostasalexis.com/literature-and-links.html

I T_Thanﬁu!
(Rledse ask your question

