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Drones Demystified!
Topic: State Estimation




How do |
estimate my
position?




World state (or system state)

= Belief state:

= Qur belief/estimate of the world state

» World state:

= Real state of the robot in the real world




State Estimation

= What parts of the world state are (most) relevant for a flying robot?

= Position
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» QOlbstacles

= Map

= Positions and intentions of other robots/human beings




State Estimation

= Cannot observe world state directly — no sensor tells us where we really are
but rather some measurements related to that (and noisy!)

= Need to estimate the world state

= But How?
» |nfer world state from sensor data

» |nfer world state from executed motions/actions




Sensor Model

= Roboft perceives the environment through its sensors:
z = h(x)

= Where z is the sensor reading, h is the world state.

= Goal: Infer the state of the world from sensor readings.

x = h™'(z)




Motion Model

= Robot executes an action (or control) u

= e.g: move forward at Tm/s

= Update belief state according to the motion model.

x = g(x,u)

= Where x’ is the current state and x is the previous state.




Probabillistic Roboftics

= Sensor observations are noisy, partial, potentially missing.

= All models are partially wrong and incomplete.

= Usually we have prior knowledge.




Probabillistic Roboftics

Probabilistic sensor models: P (Z ‘ X)

/
Probabilistic motion models: p(X ‘Xj U)

Fuse data between multiple sensors (multi-modal):
p(X\ZGP& ZBARO; ZIMU )
Fuse data over time (filtering):
P(X|21,Z2, ..., Z¢)
p(x|z1,uy, 2o, s, ..., %, Us)




Drones Demystified!
Topic: State Estimation — Recap on Probabilities




Probbability theory

= Random experiment that can produce a number of outcomes, e.g. a rolling
dice.

= Sample space, e.g.: {1,2,3,4,5,6}
= Event A s subset of outcomes, e.g. {1,3,5}
robability P(A), e.g. P(A)=0.5




Axioms of Probabillity theory
-0< P(A) <1
-P(Q)=1, P(0)=0
- P(AUB)=P(A)+ P(B)— P(AN B)




Discrete Random Variables

» X denotes a random variable
» X can take on a countable number of values in {X;,X,,...,X,}
» P(X=x) is the probability that the random variable X takes on value x;

= P()is called the probability mass function

= Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,
kitchen




Continuous Random Variables

» X takes on continuous values.

» P(X=x) or P(x) is called the probability density function (PDF).

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005

= Example:

P(x) ]




Proper Distributions Sum To One

S Distiete Case Z P(x)=1

= /Continuous Case /p(l')dl' =1




Joint and Conditional Probabilities
- p(X =2, and Y =y) = P(x,y)

» |f X and Y are independent then:
P(z,y) = P(z)P(y)

= |s the probability of x giveny

P(z|ly)P(y) = P(z,y)

» |f X and Y are independent then:

P(zly) = P(x)




Conditional Independence

= Definition of conditional independence:
P(z,y|z) = P(z|z)P(y|z)

= EqQuivalent fo:

P(z|z) = P(z|y, 2)
P(y|z) = P(y|z, 2)

= Nofte: this does not necessarily mean that:

P(z,y) = P(z)P(y)




Marginalization
= Discrete case: P(.CC) — Z P(IL‘? y)
Y

= /Continuous case: p(ﬂf) — /p(aj? y)dy




Marginalization example
PX,Y) | xi X1 X1 X1 P(Y) |

P(X) 1/2 1/4 1/8 1/8 1
—p




Expected value of a Random Variable
= Discrete case: E'[X] — Z x%P(x%)

Continuous case:E[X] — /ZE’P(X = ,’L’)d.’L’

= The expected value is the weighted average of all values a random variable
can take on.

= Expectation is a linear operator:

FElaX +b] =aF|X] +b



Covariance of a Random Variable

= Measures the square expected deviation from the mean:

Cov[X]| = E[X — E[X]]* = E[X?] — E[X]?




Estimation from Data

= Observations: X1, X9, ..., Xy € Rd

1
= Sample Mean: U = — E X;
n =
2

= Sample Covariance:

=S — ) (% — 1)

n—1

()




Drones Demystified!
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The State Estimation problem

=» We want tfo estimate the world state x from:
= Sensor measurements z and

=» Controls u

e need to model the relationship between these random variables, i.e:

p(x|z) p(x’|x; )




Causal vs. Diagnostic Reasoning
P(X‘Z) Is diagnostic
P(Z‘X) Is causal

lagnostic reasoning is typically what we need.

Often causal knowledge is easier to obtain.

= Bayes rule allows us to use causal knowledge in diagnostic reasoning.



Bayes rule

= Definition of conditional probability:

P(z,z) = P(z|2)P(z) = P(z|z)P(x)

= Bayes rule:

Observation likelihood Prior on world state
. 7
P P
plals) — PERIPE)
P(z)

f

Prior on sensor observations



Normalization

= Direct computation of P(z) can be difficult.

» |dea: compute improper distribution, normalize afterwards.

= /STEP 1: L(;g‘z) = P(Z‘fb")P(ﬂf)

- ser2. P(z) =) P(z,2) =) P(zlz)P(x) = L(z|2)

- ster3: P(x|z) = L(x|z)/P(z)




Normalization

= Direct computation of P(z) can be difficult.

» |dea: compute improper distribution, normalize afterwards.

= STEP 1: L(;g‘z) = P(Z‘fb")P(ﬂf)

- str2 P(z) =) P(z,2) =Y P(zle)P(x) =)  L(z|2)

- siers. P(x|z) = L(x|z)/P(z)




Example: Sensor Measurement

= Quadrotor seeks the Landing Zone

= The landing zone is marked with many bright lamps

= The quadrotor has a light sensor.




Example: Sensor Measurement

= Binary sensor Z o {b?"’&ght, b?“Z_ght}
= Binary world state X o {h()’]’nej hO}TL@}

= ‘Sensor model P(Z — bfr‘?,ght X m— hOZTL@) — 06
P(Z = bright| X = home) = 0.3
= Prior on world s’ro’reP(X — hOme) — 05

=  Assume: robot observes light, i.e. Z — bfr‘?,ght

= What is the probability P X = home‘Z — b?"’ight) that

the robot is above the landihg zone.




Example: Sensor Measurement

= Sensor model: P(Z — bff‘@ght X = hozne) — (.06
P(Z = bright| X = home) = 0.3

= Prior on world state: P(X — home) = (.5

= Probability after observation (using Bayes):

P(X = home|Z = bright) =
P(bright|home) P(home)

P(bright|home) P(home) + P(bright|home) P(home)
0.6 -0.5
= 0.67

0.6-0.5+0.3-0.5




Actions (Motions)

» Often the world is dynamic since

= Actions are carried out by the robot
= Actions are carried out by other agents

= Orsimply because time is passing and the world changes

OW Can we incorporate actions?



Example actions

= MAYV accelerates by changing the speed of its motors.

= The ground robot moves due to it being on an inclined terrain.

= Acftfions are never carried out with absolute certainty: leave a quadrotor
over and see it drifting!

In contrast to measurements, actions generally increase the uncertainty of
the state estimate




Action Models

= To incorporate the outcome of an action u info the current estimate
("“belief”), we use the conditional pdf

p(z’ | u, x)

This term specifies the probability that executing the action u in state x will
lead to state x’




Example: Take-Off

= Action: u € {takeoff}

= World state: 0 & {ground} air}

0.9

0.01




Integrating the Outcome of Actions

ZP "| u, ) P(x)

» Discrete case;

= ‘Confinuous case:

p(a' | u) = / p(a' | u, 2)p(z)da




Example: Take-Off

= Prior belief on robot state: P(:L‘ — ground) — 1.0
»  Robot executes “take-off" action

= What is the robot’s belief after one time step?¢

P(2' = ground) = Z P(z' = ground | u, z)P(x)

=P(z' = ground | u, x = ground)P(z = ground)
+P(z' = ground | u, x = air) P(x = air)
=0.1-1.040.01-0.0=0.1




Drones Demystified!
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Markov Assumption

= Observations depend only on current state

P(Zt\fffo:t;zl:t—hulzt) — P(Zt\l't)

= Current state depends only on previous state and current action

P(fftt‘:fUO:t;Zl:taul:t) — P(ffvt‘:ft—laut)




Markov Chain

= A Markov Chain is a stochastic process where, given the present state, the
past and the future states are independent.

A %%K? y




Underlying Assumptions

= Static world

» Independent noise

= Perfect model, no approximation errors




Bayes Filter

= Given
= Sequence of observations and actions: th Ut

= Sensor model: P(Z ‘ .I’)

= Action model: ‘ZD([L’)r ‘ZC? U)

= Prior probability of the system state: P ($)

= Desired
= Estimate of the state of the dynamic system: 70

» Posterior of the state is also called belief:

B@l(l’t) — P(mt‘ulazla coey Ut Zt)




Bayes Filter Algorithm

= For each time step, do:

= Apply motfion model:

Bel (2) ZP (24|21, ) Bel(xy—q)

rt—1

Bel(z;) = nP(z|z.)Bel(z)

= yis a normalization factor to ensure that the probability is maximum 1.




Example: Localization
= Discrete state: p & {1?2’ ”U)} X {]_’2j jh}

= Belief distribution can be represented as a grid

= /This is also called a historigram filter

P(x)=1

P(x)=0




Example: Localization

= aciion: 1, € {north, east, south,west}

= Robot can move one cell in each time step

= Actions are not perfectly executed

+




Example: Localization

= Action
= Robot can move one cell in each time step
= Actions are not perfectly executed

Example: move east

Ti—1 = Ik u=-cast | @

» 60% success rate, 10% to stay/move too far/ move one up/ move one down



Example: Localization

= Binary observation: 2 €& {m(],’f‘kerj mafr‘kefr‘}

= One (special) location has a marker

= Marker is sometimes also detected in neighboring cells

/

4




Example: Localization

» | et's start a simulation run...




Example: Localization

» ‘|‘:O

=  Prior distribution (initial belief)

= Assume that we know the initial location (if not, we could initialize with a
uniform prior)

s

IR

v




Example: Localization

» {=1, U =eaqst, z=no-marker

= Bayes filter step 1: Apply motion model

s




Example: Localization

» {=1, U =eaqst, z=no-marker

=  Bayes filter step 2: Apply observation model

/

“




Example: Localization

» {=2 U =eaqst, z=zmarker

= Bayes filter step 1: Apply motion model

/




Example: Localization

®» {=2, U =east, z=marker
=  Bayes filter step 2: Apply observation model

= Question: where is the robot?

/

v

B




Drones Demystified!
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Kalman Filter

= Bayes filter is a useful tool for state estimation.

= Histogram filter with grid representation is not very efficient.

= How can we represent the state more efficientlye




Kalman Filter

Bayes filter with continuous states
State represented with a normal distribution

Developed in the late 1950's. A cornerstone. Designed and first application:
estimate the tfrajectory of the Apollo missiles.

alman Filter is very efficient (only requires a few matrix operations per fime
step).

Applications range from economics, weather forecasting, satellite
navigation to robotics and many more.




Kalman Filter

= Univariate distribution X ~ N(u,o?)

| P mim \

Variance (squared
standard deviation)

\/2170 eXp(—% @ ;Ju) )

‘ P 99% of mass within B3sd Q
X

H-0 u+o u+30




Kalman Filter
= Multivariate normal distribution: X ~ N(;U/; Z)
= Mean: U - Rn

= Covariance: Y C Rnxm

= Probability density function:

p(X = X)lz N (x; p, 2)1:
(272|172 eXP(—E(X — )X (x - p)




Properties of Normal Distributions

= Linear tfransformation — remains Gaussian
X ~NwX),Y~AX +B
=Y ~N(Aup+B,AZA')

» /Intersection of two Gaussians — remains Gaussian

X1~ N(Ml; 31), Xg ~ N(Mz; Y

29 20 | )

ST AL SIS SRl SRS Se

p(X1)p(Xz) = N(




Properties of Normal Distributions

= Linear tfransformation — remains Gaussian
X ~NwX),Y~AX +B
=Y ~N(Aup+B,AZA')

» /Intersection of two Gaussians — remains Gaussian

X1~ N(,—"la 3), Xy ~ N(Mz; Y

pX)p(Xe) = (5 a 1)

ST AL SIS SRl SRS Se




Linear Process Model

= Consider a time-discrete stochastic process (Markov chain)

A %%% :




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian

Xt N(Mta Zt)




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

» “Assume that the system evolves linearly over time, then

Xt = AX¢ g




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

» ‘Assume that the system evolves linearly over time, then depends linearly on

the controls
x: = Ax;—1 + Bu




Linear Process Model

= Consider a time-discrete stochastic process

Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

Assume that the system evolves linearly over fime, then depends linearly on
the controls, and has zero-mean, normally distributed process noise

x; = Axy 1+ Buy + ¢
= With €¢ ~ N(Oa Q)




Linear Observations

= Further, assume we make observations that depend linearly on the state

i — CXt




Linear Observations

= Further, assume we make observations that depend linearly on the state and
that are perturbed zero-mean, normally distributed observation noise

i — CXt —+ (St
= With (St NN(O?R)




Kalman Filter

= Estimates the state x, of a discrete-fime confrolled process that is governed
by the linear stochastic difference equation

x; = Axy 1+ Buy + ¢

= And (linear) measurements of the state
z: = Oxy + 0y
= With €4 ~~ N(O? Q)ond (St ~ N(O? R)




Kalman Filter
State X & Rn

Controls 11 & Rl

Observations 7 & Rk

Process equation Xt — AXt_l - BUt -+ €¢
nx

nxn

Measurement equation Zt — CXt _|_ 61?

nxk




Kalman Filter

= |nitial belief is Gaussian

Bel(,’l}o) — N(Xo; Lo, 20)
= Next state is also Gaussian (linear transformation)

Xt N ./\/'(Axt —+ Blltj Q)

» QObservations are also Gaussian

Zy N(Cxt; R)




Recall: Bayes Filter Algorithm

= For each step, do:

= Apply motion model

@(Xﬁ) — /p(Xt‘Xt_hut)Bfil(Xt_l)dXt_l

= Apply sensor model

Bel(x;) = np(z|x;) Bel(x;)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

@(Xt) — / P(Xt‘Xt—h llt) Bfil(Xt_l) dXt_l
— S——

N (xt;Axt—1+Bupt, Q) N (xt—1504i -1, )




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

Bﬁl(Xt) — / P(Xt‘Xt—h llt) Bfil(Xt_l) dXt_l
S — N—_———
N (xt;Axt—1+Bugt, Q) N (xe—150e—1,%, )

= N (x¢; Aﬂt__l +Bu, AXA" + Q)
— N(Xt; lj’t? Zt)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x¢) =n p(z|x;) Bel(x)
——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; U Kt(Zt — Cﬂ), (I e Kt)C)Z_l)
= N (2¢; e, X¢)

= With Kt ZtCT(CEtCT —|— R) (Kalman Gain)




From Bayes Filter to Kalman Filter

Blends between our previous estimate 4+ and the discrepancy between our
sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain.
And this depends on a formula based on the errors of sensing etc. In fact it
depends on the ratfio between our uncertainty ¥ and the uncertainty of our

sensor observations R.

ﬁt -+ Kt(Zt — C/j)

N

old mean Kalman
Gain



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x¢) =n p(z|x;) Bel(x)
——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; U Kt(Zt — Cﬂ), (I e Kt)C)Z_l)
= N (2¢; e, X¢)

= With Kt ZtCT(CEtCT —|— R) (Kalman Gain)




Kalman Filter Algorithm

= For each step, do:

= Apply motfion model (prediction step)

[y = Apg 1 + Buy
3, =AZA' +Q

= Apply sensor model (correction step)

pe = i+ Ky(ze — Cjay)
Et - (I — KtC)f]t

= With Kt = itCT(CStCT —|— R)_l




Kalman Filter Algorithm

Prediction & Correction steps
= For each step, do: can happen in any order.

= Apply motion model (prediction step)

[y = Apg 1 + Buy
3, =AZA' +Q

= Apply sensor model (correction step)

pe = i+ Ky(ze — Cjay)
Et - (I — KtC)f]t

- Ky = 3,C'(CE,C" +R) !




Kalman Filter Algorithm

Prediction & Correction steps
can happen in any order.




Complexity

= Highly efficient. Polynomial in the measurement dimensionality k and state

dimensionality n
O(k2'376 1+ 7’L2)

ptimal for linear Gaussian systems

= But most robots are nonlinear! This is why in practice we use Extended Kalman
Filters and other approaches.




Code Examples and Tasks

= KF, EKF, UKF

» Kalman Filter: https://qithulb.com/unr-
arl/drones _demystified/tree/master/matlab/state-
estimation/kalman-filter



https://github.com/unr-arl/drones_demystified/tree/master/matlab/state-estimation/kalman-filter

FiInd out more

» Nhitp://www.autonomousrobotslab.com/the-kalman-filter.ntml

» Nhitp://aerostudents.com/files/probability AndStatistics/probabilityTheoryFullV
ersion.pdf

» nhitp://www.cs.unc.edu/~welch/kalman/

= http://home.wlu.edu/~levys/kalman_tutorial/

https://qithub.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

» Nhitp://www.autonomousroboftslab.com/literature-and-links.html



http://www.autonomousrobotslab.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.autonomousrobotslab.com/literature-and-links.html

I T_Thanﬁu!
(Rledse ask your question



