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MAYV Dynamics

» To append the forces and moments we need to 1 -Q,
combine their formulation with L *G
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MAYV Dynamics

= MAV forces in the body frame:
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MAYV Dynamics

= MAV forces in the body frame:
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Control System Block Diagram
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Control System Block Diagram
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Controlling a Multirotor along the x-axis

=  Assume a single-axis multirotor.

= The system has to coordinate its
pitching motion and thrust to move to
the desired point ahead of its axis.

= Roll is considered to be zero, yaw is
considered to be constant. No initial
velocity. No motion is expressed in any
other axis.

= A system of only two degrees of
freedom.



Controlling a Multirotor along the x-axis

= Simplified linear dynamics
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Controlling a Multirotor along the x-axis

=  Explanation of translation model
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Controlling a Multirotor along the x-axis

= Simplified linear dynamics
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How does this system behave?




Conftrolling a Multirotor along the x-axis

%% Simple Modeling and Control study
clear;

Jy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

A p=1[01; 00]; B.p = [0 1/0 vy}
cp eye(2); D p = zeros(2,1);
5s_pitch = ss(A p,B p,C_p,D_p);

%  x Linear Model

A x=[01l; 0 0]; B.x = [0 -gl;
C x =eyel(2); DX = zeros(2,1);
ss_x = s55(A %X,B_X%,C %,D_X);}

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch):
subplot(1,2,2); step(ss x);




Controlling a Multirotor along the x-axis
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Controlling a Multirotor along the x-axis

= Simplified linear dynamics
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How to control this system?

Most common way. use of PD
conftrollers




Controlling a Multirotor along the x-axis

= Decoupled Control Structure
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Controlling a Multirotor along the x-axis

= Decoupled Control Structure
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How to select the PD gains?




A mini infroduction 1o PID Conitrol

= PID Confrol stands for Proportional- _r f—~e | 2
Integral-Derivative feedback confirol %

and corresponds to one of the most

commonly used conftrollers used in n——
0 The PID Controller can
IN US'ITy. o N . consist of:
) ) ) I - action {:'L .
t's success is based on its capacity to i PD, § "5
o . D - action
efficiently and robustly control

variety of processes and dynamic
systems, while having an extremely
simple structure and intuitive tuning
procedures.

Not comparable in performance with
modern control strategies, but still the
most common starting point

How to select the PD gains?
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Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation



Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD'")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation



Controlling a Multirotor along the x-axis

4\ PID Tuner - Step Plot: Reference tracking
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Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD')

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation



Controlling a Multirotor along the x-axis

#\ PID Tuner - Step Plot: Reference tracking - X
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Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;
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% Pitch Linear Model
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% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD _PITCH GAINS = [K P pitch 0; 0 K D pitch];

s55_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
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Real-life Limitations

= The control margins of the aerial vehicle have limits and therefore the PID controller
has to be designed account for these constraints.

= The infegral ferm needs special caution due to the often critically stable or unstable
characteristics expressed by unmanned aicraft.

ith the exception of hover/or tfrimmed-flight, an aerial vehicle is a nonlinear system.
As the PID is controller, it naturally cannot maintain an equally good behavior for the
full flight envelope of the system. A variety of techniques such as Gain scheduling are
employed to deal with this fact.




FiInd out more

» Nhitp://www.kostasalexis.com/pid-control.hitml

»  http://www.kostasalexis.com/Igr-control.html

» Nhitp://www.kostasalexis.com/linear-model-predictive-control.himl

» hitp://cims.engin.umich.edu/CTMS/index.phpcexample=InvertedPendulum
section=ConftrolStateSpace

» Nhitp://www.kostasalexis.com/literature-and-links.ntml
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