

The Aerial Robot Loop

MAV Dynamics

To append the forces and moments we need to combine their formulation with

$$\begin{bmatrix} \dot{p}_n \\ \dot{p}_e \\ \dot{p}_d \end{bmatrix} = \mathcal{R}_b^v \begin{bmatrix} u \\ v \\ w \end{bmatrix}, \ \mathcal{R}_b^v = \begin{bmatrix} c_\theta c_\psi & s_\phi s_\theta c_\psi - c_\phi s_\psi & c_\phi s_\theta c_\psi + s_\phi s_\psi \\ c_\theta s_\psi & s_\phi s_\theta s_\psi + c_\phi c_\psi & c_\phi s_\theta s_\psi - s_\phi c_\psi \\ -s_\theta & s_\phi c_\theta & c_\phi c_\theta \end{bmatrix}$$

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} rv - qw \\ pw - ru \\ qu - pv \end{bmatrix} + \frac{1}{m} \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin \phi \tan \theta & \cos \phi \tan \theta \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi \sec \theta & \cos \phi \sec \theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{J_y - J_z}{J_x} qr \\ \frac{J_z - J_x}{J_y} pr \\ \frac{J_x}{J_z} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} + \begin{bmatrix} \frac{1}{J_x} M_x \\ \frac{1}{J_y} M_y \\ \frac{1}{J_z} M_z \end{bmatrix}$$

Next step: append the MAV forces and moments

MAV Dynamics

MAV forces in the body frame:

$$\mathbf{f}_b = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sum_{i=1}^6 T_i \end{bmatrix} - \mathcal{R}_v^b \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$

Moments in the body frame:

$$\mathbf{m}_{b} = \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} = \begin{bmatrix} ls_{30} & l & ls_{30} & -ls_{30} & -l & ls_{30} \\ -lc_{60} & 0 & lc_{60} & lc_{60} & 0 & -lc_{60} \\ -k_{m} & k_{m} & -k_{m} & k_{m} & -k_{m} & k_{m} \end{bmatrix}$$

MAV Dynamics

MAV forces in the body frame:

$$\mathbf{f}_b = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sum_{i=1}^6 T_i \end{bmatrix} - \mathcal{R}_v^b \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$

Moments in the body frame:

$$\mathbf{m}_{b} = \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} = \begin{bmatrix} ls_{30} & l & ls_{30} & -ls_{30} & -l & ls_{30} \\ -lc_{60} & 0 & lc_{60} & lc_{60} & 0 & -lc_{60} \\ -k_{m} & k_{m} & -k_{m} & k_{m} & -k_{m} & k_{m} \end{bmatrix}$$

Bx

Control System Block Diagram

There are simpler

Control System Block Diagram

Simplified loop

Controlling a Multirotor along the x-axis

- Assume a single-axis multirotor.
 - The system has to coordinate its pitching motion and thrust to move to the desired point ahead of its axis.
 - Roll is considered to be zero, yaw is considered to be constant. No initial velocity. No motion is expressed in any other axis.
 - A system of only two degrees of freedom.

Controlling a Multirotor along the x-axis

Simplified linear dynamics

$$\begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/J_y \end{bmatrix} M_y$$

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ -g \end{bmatrix} \theta$$

How does this system behave?

Optimal Model-Based Control

- Use model knowledge to design optimal control behaviors.
- The employed model must be simultaneously sufficiently accurate but also simple enough to enable efficient control computation.
- Optimal control can support linear and nonlinear systems as well as systems subject to state, output and input constraints. Further extensions (e.g. for hybrid systems) also exist.
- Established method for unconstrained linear systems regulation:
 - Linear Quadratic Regulator (LQR)
 - Generalization: Linear Quadratic Gaussian (LQG) control

Consider the system

$$\dot{x} = Ax + Bu$$

and suppose we want to design state feedback control u=Fx to stabilize the system. The design of F is a trade-off between the transit response and the control effort. The optimal control approach to this design trade-off is to define the performance index (cost functional):

$$J = \int_0^\infty [x^T(t)Qx(t) + u^T(t)Ru(t)] \ dt$$

and search for the control u=Fx that minimizes this index. Q is an $n\times m$ symmetric positive semidefinite matrix and R is an $m\times m$ symmetric positive definite matrix.

The matrix Q can be written as $Q=M^TM$, where M is a $p \times n$ matrix, with $p \le n$. With this representation:

 $x^T Q x = x^T M^T M x = z^T z$

- ightharpoonup Where z=Mx can be viewed as a controlled input.
- lacktriangle Optimal Control Problem: Find u(t)=Fx(t) to maximize J subject to the model:

$$\dot{x} = Ax + Bu$$

Since J is defined by an integral over $[0, \infty)$, the first question we need to address is: Under what conditions will J exist and be finite?

Write J as:

$$J=\lim_{t_f o\infty}ar{J}(t_f)$$

$$ar{J}(t_f) = \int_0^{t_f} [x^T(t)Qx(t) + u^T(t)Ru(t)] \ dt$$

- $-ar{J}(t_f)$ is a monotonically increasing function of t_f . Hence, as $t_f o \infty, ar{J}(t_f)$ either converges to a finite limit or diverges to infinity.
- lacksquare Under what conditions will $J=\lim_{t_f o\infty}ar{J}(t_f)$ be finite?

- Recall that (A,B) is stabilizable if the uncontrollable eigenvalues of A, if any, have negative real parts.
- Notice that (A,B) is stabilizable if (A,B) is controllable or $\,R_e[\lambda(A)] < 0\,$
- Definition: (A,C) is detectable if the observable eigenvalues of A, if any, have negative real parts.
- Lemma 1: Suppose (A,B) is stabilizable, (A,M) is detectable, where $Q=M^TM$, and u(t)=Fx(t). Then, J is finite for every $x(0)\in R^n$ if and only if:

$$R_e[\lambda(A+BF)] < 0$$

Remarks:

- The need for (A,B) to be stabilizable is clear, for otherwise there would be no F such that:
- lacktriangle To see why detectability of (A,M) is needed, consider:

$$\dot{x}=x+u,\quad J=\int_0^\infty u^2(t)\;dt$$

$$A = 1, B = 1, M = 0, R = 1$$

(A,B) is controllable, but (A,M) is not detectable

$$F=0 \Rightarrow u(t)=0 \Rightarrow J=0$$

The control is clearly optimal and results in a finite ${\it J}$ but it does not stabilize the system because ${\it A}+B{\it F}={\it A}=1$

Lemma 2: For any stabilizing control u(t)=Fx(t), the cost given by:

$$J = x(0)^T W x(0)$$

ullet where W is a symmetric positive semidefinite matrix that satisfies the Lyapunov equation:

$$W(A + BF) + (A + BF)^{T}W + Q + F^{T}RF = 0$$

Remark: The control u(t)=Fx(t) is stabilizing if:

$$R_e[\lambda(A+BF)] < 0$$

Theorem: Consider the system: $\dot{x} = Ax + Bu$ and the performance index:

$$J = \int_0^\infty [x^T(t)Qx(t) + u^T(t)Ru(t)] \ dt$$

where $Q=M^TM$, R is symmetric and positive definite, (A,B) is stabilizable, and (A,M) is detectable. The optimal control is:

$$u(t) = -R^{-1}B^T P x$$

where P is the symmetric positive semidefinite solution of the Algebraic Riccati Equation (ARE):

$$0 = PA + A^TP + Q - PBR^{-1}B^TP$$

Remarks:

Since the control is stabilizing:

$$R_e[\lambda(A - BR^{-1}B^TP)] < 0$$

- The control is optimal among all square integratable signals u(t), not just among u(t)=Fx(t)
- The Ricatti equation can have multiple solutions, but only one of them is positive semidefinite.

Typical penalty matrices selection:

$$Q=\left[egin{array}{cccc} q_1 & & & & \ & q_2 & & \ & & \ddots & \ & & & q_n \end{array}
ight], \;\; R=
ho\left[egin{array}{cccc} r_1 & & & \ & r_2 & & \ & & \ddots & \ & & & r_m \end{array}
ight]$$

$$q_i = rac{1}{t_{si}(x_{imax})^2}, ~~ r_i = rac{1}{(u_{imax})^2}, ~~
ho > 0$$

- $-t_{si}$ is the desired settling time of xi
- x_{imax} is a constraint on $|x_i|$
- $ightharpoonup u_{imax}$ is a constraint on $|u_i|$
- ightharpoonup
 ho is chosen to tradeoff regulation versus control effort

LQR Loop (F=K)

Recall:

$$\begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/J_y \end{bmatrix} M_y$$

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ -g \end{bmatrix} \theta$$


```
%% Simple Modeling and Control study
clear;
J_y = 1.2e-5;
g = 9.806; mass = 1.2;

%    Pitch Linear Model
A_p = [0 1; 0 0]; B_p = [0; 1/J_y];
C_p = eye(2); D_p = zeros(2,1);
ss_pitch = ss(A_p,B_p,C_p,D_p);

%    x Linear Model
A_x = [0 1; 0 0]; B_x = [0; -g];
C_x = eye(2); D_x = zeros(2,1);
ss_x = ss(A_x,B_x,C_x,D_x);

%    Observe the Step responses of the system subplot(1,2,1); step(ss_pitch);
subplot(1,2,2); step(ss_x);
```



```
%% System discretization
Ts_pitch = 0.005;
Ts_trans = 0.01;
ss_pitch_d = c2d(ss_pitch, Ts_pitch, 'zoh');
ss_x_d = c2d(ss_x, Ts_trans, 'zoh');
```



```
%% Design the LQR Controller for Pitch

Q_pitch = diag([1000, 10]);

R_pitch = 1;

[K_pitch,S_pitch,e_pitch] = dlqr(ss_pitch_d.A, ss_pitch_d.B, Q_pitch, R_pitch);
```

```
[K,S,e] = dlqr(A,B,Q,R,N)
```



```
%% Design the LQR Controller for Pitch
Q pitch = diag([1000, 10]);
R pitch = 1;
[K_pitch,S_pitch,e_pitch] = dlqr(ss_pitch_d.A, ss_pitch_d.B, Q_pitch, R_pitch);
%% Design the LQR Controller for the translational X-Dynamics
Q x = diag([100, 1]);
R x = 1;
[K_x,S_x,e_x] = dlqr(ss_x_d.A, ss_x_d.B, Q_x, R_x)
```

```
%% Simulate the closed-loop response for pitch
ss_pitch_cl_d = feedback(ss_pitch_d, -K_pitch, 1);
t_pitch = 0:0.005:2;
u_pitch = zeros(1,length(t_pitch));
x_pitch_0 = [pi/4,0];
x_pitch_0 = [pi/4,0];
x_pitch = lsim(ss_pitch_cl_d,u_pitch,t_pitch,x_pitch_0);
subplot(1,2,1); plot(t_pitch,x_pitch(:,1),'b','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('$$\theta~(rad)$$','Interpreter','LaTex','FontSize',22); grid on;
subplot(1,2,2); plot(t_pitch,x_pitch(:,2),'r','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('$$\dot\theta~(rad/s)$$','Interpreter','LaTex','FontSize',22); grid on;
axis tight;
```



```
%% Simulate the closed-loop response for pitch

ss_x_cl_d = feedback(ss_x_d,-K_x,1);
t_x = 0:0.01:5;
u_x = zeros(1,length(t_x));
x_x_0 = [10,0];
x_x = lsim(ss_x_cl_d,u_x,t_x,x_x_0);

subplot(1,2,1); plot(t_x,x_x(:,1),'b','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('$$x^(m)$$','
xuis tight
subplot(1,2,2); plot(t_x,x_x(:,2),'r','LineWidth',2);
xlabel('Time (s)','Interpreter','LaTex','FontSize',22); ylabel('$$\dot x^(m/s)$$','Interpreter','LaTex','FontSize',22); grid on;
axis tight
```


$$\begin{bmatrix} \dot{\alpha} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -0.313 & 56.7 & 0 \\ -0.0139 & -0.426 & 0 \\ 0 & 56.7 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} 0.232 \\ 0.0203 \\ 0 \end{bmatrix} u_{elev}$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ q \\ \theta \end{bmatrix}$$

For a step reference of 0.2 radians, the design criteria are the following.

- 1. Overshoot less than 10%
- 2. Rise time less than 2 seconds
- 3. Settling time less than 10 seconds
- 4. Steady-state error less than 2%

$$\begin{bmatrix} \dot{\alpha} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -0.313 & 56.7 & 0 \\ -0.0139 & -0.426 & 0 \\ 0 & 56.7 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} 0.232 \\ 0.0203 \\ 0 \end{bmatrix} u_{elev}$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ q \\ \theta \end{bmatrix}$$

For a step reference of 0.2 radians, the design criteria are the following.

- 1. Overshoot less than 10%
- 2. Rise time less than 2 seconds
- 3. Settling time less than 10 seconds
- 4. Steady-state error less than 2%

```
%% LQR Design

p = 2;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);

sys_cl = ss(A-B*K, B, C, D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR');
```



```
%% Closed-loop Simulation

p = 50;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);
sys_cl = ss(A-B*K, B, C, D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR');
```



```
Adding Precompensation

p = 50;
Q = p*C'*C;
R = 1;
[K] = lqr(A,B,Q,R);
Nbar = rscale(A,B,C,D,K);
```

```
%% Closed-loop Simulation with Precompensation
sys_cl = ss(A-B*K,B*Nbar,C,D);
step(0.2*sys_cl)
ylabel('pitch angle (rad)');
title('Closed-Loop Step Response: LQR with Precompensation');
```


Find out more

- http://www.kostasalexis.com/pid-control.html
- <u>http://www.kostasalexis.com/lgr-control.html</u>
- http://www.kostasalexis.com/linear-model-predictive-control.html
- <u>http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum</u> <u>§ion=ControlStateSpace</u>
- http://www.kostasalexis.com/literature-and-links.html

