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MAYV Dynamics

» To append the forces and moments we need to 1 -Q,
combine their formulation with L *G
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MAYV Dynamics

= MAV forces in the body frame:
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MAYV Dynamics

= MAV forces in the body frame:

60°

0
0 | -R N
ST o
-l830 [ ZSSO -—ngO
——ZCGO 0 ZCGO ZCGO
—kpm ko —km km

30°

—1
0
k.

ZSgo

——ZCGO




Control System Block Diagram
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Control System Block Diagram
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Controlling a Multirotor along the x-axis

=  Assume a single-axis multirotor.

= The system has to coordinate its
pitching motion and thrust to move to
the desired point ahead of its axis.

= Roll is considered to be zero, yaw is
considered to be constant. No initial
velocity. No motion is expressed in any
other axis.

= A system of only two degrees of
freedom.



Controlling a Multirotor along the x-axis

= Simplified linear dynamics
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How does this system behave?




Optimal Model-Based Control

= Use model knowledge to design optimal control
behaviors.

» The employed model must be simultaneously
sufficiently accurate but also simple enough to enable
efficient control computation.

» Optimal confrol can support linear and nonlinear
ystems as well as systems subject to state, output and
input constraints. Further extensions (e.g. for hybrid
systems) also exist.

» Established method for unconstrained linear systems
regulation:

= |inear Quadratic Regulator (LQR)

» Generalization: Linear Quadratic Gaussian (LQG) confrol




Linear Quadratic Regulator

» Consider the system
r = Ax + Bu

= and suppose we want to design state feedback control u=Fx to stabilize the system.
The design of F is a trade-off between the fransit response and the control effort. The
timal control approach to this design tfrade-off is to define the performance index

(cost functional): —

J = / 2T (1) Qz(t) + u” (t) Ru(t)] dt
0

= and search for the confrol u=Fx that minimizes this index. Q is an nxm symmeitric
positive semidefinite matrix and R is an mxm symmetric positive definite matrix.



Linear Quadratic Regulator

The matrix Q can be written as Q=M™™, where M is a pxn matrix, with p<n. With this

representation: T T T T
T Qr=x M Mx =2z z

Where z=Mx can be viewed as a controlled input.

ptimal Control Problem: Find u(t)=Fx(t) to maximize J subject to the model:

r = Ax + Bu

Since J is defined by an integral over[0, co), the first question we need to address is:
Under what conditions will J exist and be finite¢




Linear Quadratic Regulator

» Write J as:

J = lim J(ts)

tf—>OO

Ity) = | ©Qa(t) +uT (®)Rut)] dt

= /J(ts)is a monotonically increasing function of t.. Hence, as ty — oo, J(tf) either
converges to a finite limit or diverges to infinity.

= Under what conditions will J:tlim J(tf) be finite?
f—00



Linear Quadratic Regulator

= Recall that (A,B) is stabilizable if the uncontrollable eigenvalues of A, if any, have
negative real parts.

= Notice that (A,B) is stabilizable if (A,B) is controllable or R, [A(A)] <0

Definition: (A,C) is detectable if the observable eigenvalues of A, if any, have
gative real parts.

Lemma 1: Suppose (A,B) is stabilizable, (A,M) is detectable, where Q=M™, and
u(t)=Fx(t). Then, J is finite for every (0) € R™ if and only if:

R:(ANA+ BF)]| <0



Linear Quadratic Regulator

=» Remarks:

= The need for (A,B) to be stabilizable is clear, for otherwise there would be no F such that:

To see why detectability of (A,M) is needed, consider:

0
r=x+ u, J:/ u?(t) dt
0

A=1, B=1, M=0, R=1

(A,B) is controllable, but (A,M) is not detectable
F=0= u(t) =0 = J=0

The control is clearly optimal and results in a finite J but it does not stabilize the system

because A+ BF = A =1



Linear Quadratic Regulator

= Lemma 2: For any stabilizing control u(t)=Fx(t), the cost given by:
J = z(0)I Wax(0)

= where W is a symmetric positive semidefinite maitrix that satisfies the Lyapunov
equation:

W(A+ BF)+ (A+BF)!W +Q+ F'RF =0

= Remark: The conftrol u(t)=Fx(t) is stabilizing if:

R:(AN(A+ BF)] <0



Linear Quadratic Regulator

= Theorem: Consider the system: @& = Ax + Bu  and the performance index:

J = / T 12T (0 Qa(t) + uT (1) Ru(t)] dt
0

= where Q=MTM, R is symmetric and positive definite, (A,B) is stabilizable, and (A,M) is
detectable. The optimal conftrol is:

u(t) = —R !B Pz

= where P is the symmetric positive semidefinite solution of the Algebraic Riccati
Equation (ARE):

0=PA+ATP+Q - PBR 'B'P




Linear Quadratic Regulator

=» Remarks:

= Since the control is stabilizing:

R.[AMA—-BR'B'P)] <0

= The control is optimal among all square integratable signals u(t), not just among u(t)=Fx(t)

= The Ricafti equation can have mulfiple solutions, but only one of them is positive
semidefinite.
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Linear Quadratic Regulator

= Typical penalty matrices selection:
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Linear Quadratic Regulator

= LQR Loop (F=K)

System

) | Dynamics
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MATLAB Design Example

= Recall:
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MATLAB Design Example

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;
g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=[01; 00]; B p = [0; 1/0_¥]:
Cp eye(2); D p = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% X Linear Model

Ax=[01; 00]; B x = [0 —gl;
C X =-eye(2); D x = zeros(2,1);
55 x = ss(A X,B %X,C X,D X);

% Ohbserve the Step responses of the system
subplot(1l,2,1): step(ss_pitch);:
subplot(1,2,2): step(ss x);




MATLAB Design Example

%% System discretization

Ts pitch = 0.005;

Ts trans 0.01;

55 pitch d = c2d(ss_pitch,Ts pitch,'zoh');
55 x d = c2d(ss x,Ts trans, 'zoh');




MATLAB Design Example

%% Design the LQR Controller for Pitch

Q pitch = diag([1000, 10]1):
R _pitch = 1;
[K pitch,S pitch,e pitch] = dlgr(ss pitch d.A, ss pitch d.B, Q pitch, R pitch):;

[Kr Sy e] — dlqr (Ar B,Q, R/N)




MATLAB Design Example

%% Design the LQR Controller for Pitch

Q pitch = diag([1000, 10]1):
R _pitch = 1;
[K pitch,S pitch,e pitch] = dlgr(ss pitch d.A, ss pitch d.B, Q pitch, R pitch):;

%% Design the LQR Controller for the translational X-Dynamics

Q x = diag([100, 11);
R x=1;
[K %,5 ®X,e %] = dlgr(ss x d.A, 55 x d.B, Q %, R X)




MATLAB Design Example

%% Simulate the closed-loop response for pitch

55 pitch cl d = feedback(ss pitch d,-K pitch,1);

t pitch = 0:0.005:2;

u pitch = zeros(1l,length(t pitch));

X pitch 0 = [pi/4,0];

¥ pitch = 1sim(ss_pitch cl d,u pitch,t pitch,x pitch 0);

subplot(1,2,1); plot(t pitch,x pitch(:,1),'b', 'LineWidth",2);

®label ("Time (s)','Interpreter','LaTex','Fontsize',22); ylabel ('$5\theta~(rad)$5', 'Interpreter', "LaTex', 'Fontsize',22); grid on;
subplot(1,2,2); plot(t pitch,x pitch(:,2),'r", 'LineWidth',2);

®xlabel ('"Time (s)', "Interpreter','LaTex', 'Fontsize',22); ylabel ('$5\dot “theta~(rad/s)$&', 'Interpreter', 'LaTex', 'FontsSize',22); grid gh;
axis tight;




MATLAB Design Example
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MATLAB Design Example

%% Simulate the closed-loop response for pitch

55 x ¢l d = feedback(ss % d,-K %x,1)7
t x = 0:0.01:5;

u x = zeros(l,length(t x));

¥ x 0= [10,0]1;

¥ Xx = lsim(ss x cl d,u %x,t x,x x 0);

subplot(1,2,1); plot(t x,x x(:,1),'b', 'LinewWidth",2);

xlabel ('"Time (s)','Interpreter','LaTex','FontsSize',22); ylabel ('55x~(m) 55", "'Interpreter', 'LaTex', 'Fontsize",22); grid on;

axis tight

subplot(1,2,2); plot(t x,x x(:,2),"'r", 'LineWidth', 2);

xlabel ("Time (s)','Interpreter','LaTex','FontSize',22); ylabel ('$5\dot x~(m/s)5%5', "Interpreter', 'LaTex', 'FontSize',22); grid on;

avia tirht




MATLAB Design Example
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MATLAB Aircraft Pitch Example
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For a step reference of-O.Q-rOdions, the design criteria are the following.
1. Overshoot less than 10%

2. Rise time less than 2 seconds

3. Settling time less than 10 seconds

4,

Steady-state error less than 2%




MATLAB Aircraft Pitch Example
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MATLAB Aircraft Pitch Example

%% LQR Design

P =2
Q — p:‘.’g!:\'c;
R = 1;

[K] = lqr (A,B,Q,R);

sys cl = ss(A-B*K, B, C, D);
step(0.2*s5ys cl)

ylabel ("pitch angle (rad)');
title('Closed-Loop Step Response: LQR'):;




MATLAB Aircraft Pitch Example

Closed-Loop Step Response: LQR
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MATLAB Aircraft Pitch Example

%% Closed-loop Simulation

= 50;

= p:tg- EloF

= 1;

[K] = 1gr(A,B,Q,R);

sys ¢l = ss(A-B*K, B, C, D);
step(0.2%sys _cl)

ylabel ('"pitch angle (rad)'):
title('Closed-Loop Step Response: LQR');

v & e




MATLAB Aircraft Pitch Example

Closed-Loop Step Response: LQR
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MATLAB Aircraft Pitch Example

%% Adding Precompensation
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[K] = lqr (A,B,Q,R);
Nbar = rscale(d,B,C,D,K);




MATLAB Aircraft Pitch Example

%% Closed-loop Simulation with Precompensation

sys cl = s5s5(A-B*K,B*Nbar,C,D);

step(0.2*%sys cl)

ylabel ("pitch angle (rad)'):

title('Closed-Loop Step Response: LQR with Precompensation');




ATLAB Aircraft Pitch Example

Closed-Loop Step Response: LQR with Precompensation

0.25 ‘
0.2 e T —
//
0.15 —
=)
e
@«
=)
c
@
=
S
3
01—
0.05 —
N | | | ! |
0 0.5 1 15 2 25

Time (seconds)



FiInd out more

» Nhitp://www.kostasalexis.com/pid-control.hitml

»  http://www.kostasalexis.com/Igr-control.html

» Nhitp://www.kostasalexis.com/linear-model-predictive-control.himl

» hitp://cims.engin.umich.edu/CTMS/index.phpcexample=InvertedPendulum
section=ConftrolStateSpace

» Nhitp://www.kostasalexis.com/literature-and-links.ntml
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