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The Aerial Robot Loop

 How to design the
flight control of an
aerial robot and
program its autopilot.

Section 3 of our course



MAV Dynamics
 To append the forces and moments we need to

combine their formulation with

 Next step: append the MAV forces

and moments



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:
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 MAV forces in the body frame:

 Moments in the body frame:



Control System Block Diagram

 There are simpler



Control System Block Diagram

 Simplified loop



Controlling a Multirotor along the x-axis

 Assume a single-axis multirotor.

 The system has to coordinate its

pitching motion and thrust to move to

the desired point ahead of its axis.

 Roll is considered to be zero, yaw is

considered to be constant. No initial

velocity. No motion is expressed in any

other axis.

 A system of only two degrees of

freedom.



Controlling a Multirotor along the x-axis

 Simplified linear dynamics

How does this system behave?



Optimal Model-Based Control

 Use model knowledge to design optimal control

behaviors.

 The employed model must be simultaneously

sufficiently accurate but also simple enough to enable

efficient control computation.

 Optimal control can support linear and nonlinear

systems as well as systems subject to state, output and

input constraints. Further extensions (e.g. for hybrid

systems) also exist.

 Established method for unconstrained linear systems

regulation:

 Linear Quadratic Regulator (LQR)

 Generalization: Linear Quadratic Gaussian (LQG) control



Linear Quadratic Regulator

 Consider the system

 and suppose we want to design state feedback control u=Fx to stabilize the system.

The design of F is a trade-off between the transit response and the control effort. The

optimal control approach to this design trade-off is to define the performance index

(cost functional):

 and search for the control u=Fx that minimizes this index. Q is an nxm symmetric

positive semidefinite matrix and R is an mxm symmetric positive definite matrix.



Linear Quadratic Regulator

 The matrix Q can be written as Q=MTM, where M is a pxn matrix, with p≤n. With this

representation:

 Where z=Mx can be viewed as a controlled input.

 Optimal Control Problem: Find u(t)=Fx(t) to maximize J subject to the model:

 Since J is defined by an integral over , the first question we need to address is:

Under what conditions will J exist and be finite?



Linear Quadratic Regulator

 Write J as:

 is a monotonically increasing function of tf. Hence, as either

converges to a finite limit or diverges to infinity.

 Under what conditions will be finite?



Linear Quadratic Regulator

 Recall that (A,B) is stabilizable if the uncontrollable eigenvalues of A, if any, have

negative real parts.

 Notice that (A,B) is stabilizable if (A,B) is controllable or

 Definition: (A,C) is detectable if the observable eigenvalues of A, if any, have

negative real parts.

 Lemma 1: Suppose (A,B) is stabilizable, (A,M) is detectable, where Q=MTM, and

u(t)=Fx(t). Then, J is finite for every if and only if:



Linear Quadratic Regulator

 Remarks:

 The need for (A,B) to be stabilizable is clear, for otherwise there would be no F such that:

 To see why detectability of (A,M) is needed, consider:

 (A,B) is controllable, but (A,M) is not detectable

 The control is clearly optimal and results in a finite J but it does not stabilize the system

because



Linear Quadratic Regulator

 Lemma 2: For any stabilizing control u(t)=Fx(t), the cost given by:

 where W is a symmetric positive semidefinite matrix that satisfies the Lyapunov

equation:

 Remark: The control u(t)=Fx(t) is stabilizing if:



Linear Quadratic Regulator

 Theorem: Consider the system: and the performance index:

 where Q=MTM, R is symmetric and positive definite, (A,B) is stabilizable, and (A,M) is

detectable. The optimal control is:

 where P is the symmetric positive semidefinite solution of the Algebraic Riccati

Equation (ARE):



Linear Quadratic Regulator

 Remarks:

 Since the control is stabilizing:

 The control is optimal among all square integratable signals u(t), not just among u(t)=Fx(t)

 The Ricatti equation can have multiple solutions, but only one of them is positive

semidefinite.



Linear Quadratic Regulator

 Typical penalty matrices selection:

 tsi is the desired settling time of xi

 ximax is a constraint on |xi|

 uimax is a constraint on |ui|

 ρ is chosen to tradeoff regulation versus control effort



Linear Quadratic Regulator

 LQR Loop (F=K)



MATLAB Design Example

 Recall:



MATLAB Design Example



MATLAB Design Example



MATLAB Design Example

[K,S,e] = dlqr(A,B,Q,R,N)



MATLAB Design Example
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MATLAB Design Example



MATLAB Aircraft Pitch Example

For a step reference of 0.2 radians, the design criteria are the following.

1. Overshoot less than 10%

2. Rise time less than 2 seconds

3. Settling time less than 10 seconds

4. Steady-state error less than 2%
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MATLAB Aircraft Pitch Example



Find out more

 http://www.kostasalexis.com/pid-control.html

 http://www.kostasalexis.com/lqr-control.html

 http://www.kostasalexis.com/linear-model-predictive-control.html

 http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum

&section=ControlStateSpace

 http://www.kostasalexis.com/literature-and-links.html

http://www.kostasalexis.com/pid-control.html
http://www.kostasalexis.com/lqr-control.html
http://www.kostasalexis.com/linear-model-predictive-control.html
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=ControlStateSpace
http://www.kostasalexis.com/literature-and-links.html


Thank you! 
Please ask your question!


