
Autonomous Mobile Robot Design

Dr. Kostas Alexis (CSE) 

Topic: State Estimation



World state (or system state)

 Belief state:

 Our belief/estimate of the world state

 World state:

 Real state of the robot in the real world

Parts of this talk are inspired from the edX lecture “Autonomous Navigation for Flying Robots” from TUM



State Estimation

 What parts of the world state are (most) relevant for a flying robot?

 Position

 Velocity

 Orientation

 Attitude rate

 Obstacles

 Map

 Positions and intentions of other robots/human beings

 …



State Estimation

 Cannot observe world state directly

 Need to estimate the world state

 But How?

 Infer world state from sensor data

 Infer world state from executed motions/actions



Sensor Model

 Robot perceives the environment through its sensors:

 Where z is the sensor reading, h is the world state.

 Goal: Infer the state of the world from sensor readings.



Motion Model

 Robot executes an action (or control) u

 e.g: move forward at 1m/s

 Update belief state according to the motion model:

 Where x’ is the current state and x is the previous state.



Probabilistic Robotics

 Sensor observations are noisy, partial, potentially missing.

 All models are partially wrong and incomplete.

 Usually we have prior knowledge.



Probabilistic Robotics

 Probabilistic sensor models:

 Probabilistic motion models:

 Fuse data between multiple sensors (multi-modal):

 Fuse data over time (filtering):
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Probability theory

 Random experiment that can produce a number of outcomes, e.g. a rolling

dice.

 Sample space, e.g.: {1,2,3,4,5,6}

 Event A is subset of outcomes, e.g. {1,3,5}

 Probability P(A), e.g. P(A)=0.5



Axioms of Probability theory









Discrete Random Variables

 X denotes a random variable

 X can take on a countable number of values in {x1,x2,…,xn}

 P(X=xi) is the probability that the random variable X takes on value xi

 P(.) is called the probability mass function

 Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,

kitchen



Continuous Random Variables

 X takes on continuous values.

 P(X=x) or P(x) is called the probability density function (PDF).

 Example:

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005



Proper Distributions Sum To One

 Discrete Case

 Continuous Case



Joint and Conditional Probabilities



 If X and Y are independent then:

 Is the probability of x given y

 If X and Y are independent then:



Conditional Independence

 Definition of conditional independence:

 Equivalent to:

 Note: this does not necessarily mean that:



Marginalization

 Discrete case:

 Continuous case:



Marginalization example



Expected value of a Random Variable

 Discrete case:

 Continuous case:

 The expected value is the weighted average of all values a random variable

can take on.

 Expectation is a linear operator:



Covariance of a Random Variable

 Measures the square expected deviation from the mean:



Estimation from Data

 Observations:

 Sample Mean:

 Sample Covariance:
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The State Estimation problem

 We want to estimate the world state x from:

 Sensor measurements z and

 Controls u

 We need to model the relationship between these random variables, i.e:



Causal vs. Diagnostic Reasoning

Is diagnostic

Is causal

 Diagnostic reasoning is typically what we need.

 Often causal knowledge is easier to obtain.

 Bayes rule allows us to use causal knowledge in diagnostic reasoning.



Bayes rule

 Definition of conditional probability:

 Bayes rule:

Observation likelihood Prior on world state

Prior on sensor observations



Normalization

 Direct computation of P(z) can be difficult.

 Idea: compute improper distribution, normalize afterwards.

 STEP 1:

 STEP 2:

 STEP 3:



Normalization

 Direct computation of P(z) can be difficult.

 Idea: compute improper distribution, normalize afterwards.

 STEP 1:

 STEP 2:

 STEP 3:



Example: Sensor Measurement

 Quadrotor seeks the Landing Zone

 The landing zone is marked with many bright lamps

 The quadrotor has a light sensor.



Example: Sensor Measurement

 Binary sensor

 Binary world state

 Sensor model

 Prior on world state

 Assume: robot observes light, i.e.

 What is the probability that

the robot is above the landing zone.



Example: Sensor Measurement

 Sensor model:

 Prior on world state:

 Probability after observation (using Bayes):
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Markov Assumption

 Observations depend only on current state

 Current state depends only on previous state and current action



Markov Chain

 A Markov Chain is a stochastic process where, given the present state, the

past and the future states are independent.



Underlying Assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors



Bayes Filter

 Given

 Sequence of observations and actions:

 Sensor model:

 Action model:

 Prior probability of the system state:

 Desired

 Estimate of the state of the dynamic system:

 Posterior of the state is also called belief:



Bayes Filter Algorithm

 For each time step, do:

 Apply motion model:

 Apply sensor model:

 η is a normalization factor to ensure that the probability is maximum 1.



Notes

 Bayes filters also work on continuous state spaces (replace sum by integral).

 Bayes filter also works when actions and observations are asynchronous.



Example: Localization

 Discrete state:

 Belief distribution can be represented as a grid

 This is also called a historigram filter



Example: Localization

 Action:

 Robot can move one cell in each time step

 Actions are not perfectly executed



Example: Localization

 Action

 Robot can move one cell in each time step

 Actions are not perfectly executed

 Example: move east

 60% success rate, 10% to stay/move too far/ move one up/ move one down



Example: Localization

 Binary observation:

 One (special) location has a marker

 Marker is sometimes also detected in neighboring cells



Example: Localization

 Let’s start a simulation run…



Example: Localization

 t=0

 Prior distribution (initial belief)

 Assume that we know the initial location (if not, we could initialize with a

uniform prior)



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 2: Apply observation model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 2: Apply observation model

 Question: where is the robot?
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Kalman Filter

 Bayes filter is a useful tool for state estimation.

 Histogram filter with grid representation is not very efficient.

 How can we represent the state more efficiently?



Kalman Filter

 Bayes filter with continuous states

 State represented with a normal distribution

 Developed in the late 1950’s. A cornerstone. Designed and first application:

estimate the trajectory of the Apollo missiles.

 Kalman Filter is very efficient (only requires a few matrix operations per time

step).

 Applications range from economics, weather forecasting, satellite

navigation to robotics and many more.



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction



Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n

 Optimal for linear Gaussian systems

 But most robots are nonlinear! This is why in practice we use Extended Kalman

Filters and other approaches.



Python KF Implementation

http://www.kostasalexis.com/the-kalman-filter.html

http://www.kostasalexis.com/the-kalman-filter.html


Assignment 1: Estimating a Random Constant

 The goal of this task is to estimate a scalar random constant, which may be a voltage level.
Let's assume that we have the ability to take measurements of the constant, but that the
measurements are corrupted by 0.1 Volt RMS white measurement noise (e.g. our analog to
digital converter is not very accurate). In this example, the process is governed by the linear
difference equation:

 with a measurement z that is:

 The state does not change from step to step, this is why A=1. There is no control input,
therefore B =0,u=0. Our noisy measurement, directly measures the state - therefore H=1.
Notice that the subscript k was dropped in several places because the respective
parameters remain constant in our simple model.

 Programming Language: preferably one Python, MATLAB, C++, or JAVA

 Form of the Report: 1. Brief report with the code and the relevant plots indicating the correct estimate
of the constant, 2. Comments on what you understood about the filter operation.

 Deadline: March 11, 2016



Code Examples and Tasks

 KF, EKF, UKF

 Kalman Filter: https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/matlab

/state-estimation/kalman-filter

 Extended Kalman Filter: https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/matlab

/state-estimation/extended-kalman-filter

 Unscented Kalman Filter: https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/matlab

/state-estimation/unscented-kalman-filter

https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/state-estimation/kalman-filter
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/state-estimation/extended-kalman-filter
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/state-estimation/unscented-kalman-filter


How does this apply to my project?

 State estimation is the way to use robot sensors to infer the robot state. You

will use it for estimating your robot pose or its map, to track and object and

be able to follow it etc.



Find out more

 http://www.kostasalexis.com/the-kalman-filter.html

 http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullV

ersion.pdf

 http://www.cs.unc.edu/~welch/kalman/

 http://home.wlu.edu/~levys/kalman_tutorial/

 https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

 http://www.kostasalexis.com/literature-and-links.html

http://www.kostasalexis.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.kostasalexis.com/literature-and-links.html


Thank you! 
Please ask your question!


