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Drones Demystified!

Topic: State Estimation



How do I 

estimate my 

position?



Drones Demystified!

Topic: State Estimation – Kalman Filter



Kalman Filter

 Bayes filter is a useful tool for state estimation.

 Histogram filter with grid representation is not very efficient.

 How can we represent the state more efficiently?



Kalman Filter

 Bayes filter with continuous states

 State represented with a normal distribution

 Developed in the late 1950’s. A cornerstone. Designed and first application:

estimate the trajectory of the Apollo missiles.

 Kalman Filter is very efficient (only requires a few matrix operations per time

step).

 Applications range from economics, weather forecasting, satellite

navigation to robotics and many more.



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)
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Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model
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From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model
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From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction



Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n

 Optimal for linear Gaussian systems

 But most robots are nonlinear! This is why in practice we use Extended Kalman

Filters and other approaches.



Code Examples and Tasks

 KF, EKF, UKF

 Kalman Filter: https://github.com/unr-

arl/drones_demystified/tree/master/matlab/state-

estimation/kalman-filter

https://github.com/unr-arl/drones_demystified/tree/master/matlab/state-estimation/kalman-filter


Find out more

 http://www.autonomousrobotslab.com/the-kalman-filter.html

 http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullV

ersion.pdf

 http://www.cs.unc.edu/~welch/kalman/

 http://home.wlu.edu/~levys/kalman_tutorial/

 https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

 http://www.autonomousrobotslab.com/literature-and-links.html

http://www.autonomousrobotslab.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.autonomousrobotslab.com/literature-and-links.html


Thank you! 
Please ask your question!


