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Drones Demystified!
Topic: State Estimation — Kalman Filter




Kalman Filter

= Bayes filter is a useful tool for state estimation.

= Histogram filter with grid representation is not very efficient.

= How can we represent the state more efficientlye




Kalman Filter

Bayes filter with continuous states
State represented with a normal distribution

Developed in the late 1950's. A cornerstone. Designed and first application:
estimate the tfrajectory of the Apollo missiles.

alman Filter is very efficient (only requires a few matrix operations per fime
step).

Applications range from economics, weather forecasting, satellite
navigation to robotics and many more.




Kalman Filter

= Univariate distribution X ~ N(u,o?)
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Kalman Filter
= Multivariate normal distribution: X ~ N(;U/; Z)
= Mean: U - Rn

= Covariance: Y C Rnxm

= Probability density function:

p(X = X)lz N (x; p, 2)1:
(272|172 eXP(—E(X — )X (x - p)




Properties of Normal Distributions

= Linear tfransformation — remains Gaussian
X ~NwX),Y~AX +B
=Y ~N(Aup+B,AZA')

» /Intersection of two Gaussians — remains Gaussian

X1~ N(Ml; 31), Xg ~ N(Mz; Y

29 20 | )

ST AL SIS SRl SRS Se

p(X1)p(Xz) = N(




Properties of Normal Distributions

= Linear tfransformation — remains Gaussian
X ~NwX),Y~AX +B
=Y ~N(Aup+B,AZA')

» /Intersection of two Gaussians — remains Gaussian
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Linear Process Model

= Consider a time-discrete stochastic process (Markov chain)




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian

Xt N(Mta Zt)




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

» “Assume that the system evolves linearly over time, then

Xt = AX¢ g




Linear Process Model

= Consider a time-discrete stochastic process

»  Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

» ‘Assume that the system evolves linearly over time, then depends linearly on

the controls
x: = Ax;—1 + Bu




Linear Process Model

= Consider a time-discrete stochastic process

Represent the estimated state (belief) with a Gaussian
Xt N ( ot Zt)

Assume that the system evolves linearly over fime, then depends linearly on
the controls, and has zero-mean, normally distributed process noise

x; = Axy 1+ Buy + ¢
= With €¢ ~ N(Oa Q)




Linear Observations

= Further, assume we make observations that depend linearly on the state

i — CXt




Linear Observations

= Further, assume we make observations that depend linearly on the state and
that are perturbed zero-mean, normally distributed observation noise

i — CXt —+ (St
= With (St NN(O?R)




Kalman Filter

= Estimates the state x, of a discrete-fime confrolled process that is governed
by the linear stochastic difference equation

x; = Axy 1+ Buy + ¢

= And (linear) measurements of the state
z: = Oxy + 0y
= With €4 ~~ N(O? Q)ond (St ~ N(O? R)




Kalman Filter
State X & Rn

Controls 11 & Rl

Observations 7 & Rk

Process equation Xt — AXt_l - BUt -+ €¢
nx

nxn

Measurement equation Zt — CXt _|_ 61?

nxk




Kalman Filter

= |nitial belief is Gaussian

Bel(,’l}o) — N(Xo; Lo, 20)
= Next state is also Gaussian (linear transformation)

Xt N ./\/'(Axt —+ Blltj Q)

» QObservations are also Gaussian

Zy N(Cxt; R)




Recall: Bayes Filter Algorithm

= For each step, do:

= Apply motion model

@(Xﬁ) — /p(Xt‘Xt_hut)Bfil(Xt_l)dXt_l

= Apply sensor model

Bel(x;) = np(z|x;) Bel(x;)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

@(Xt) — / P(Xt‘Xt—h llt) Bfil(Xt_l) dXt_l
— S——

N (xt;Axt—1+Bupt, Q) N (xt—1504i -1, )




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

Bﬁl(Xt) — / P(Xt‘Xt—h llt) Bfil(Xt_l) dXt_l
S — N—_———
N (xt;Axt—1+Bugt, Q) N (xe—150e—1,%, )

= N (x¢; Aﬂt__l +Bu, AXA" + Q)
— N(Xt; lj’t? Zt)




From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x¢) =n p(z|x;) Bel(x)
——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; U Kt(Zt — Cﬂ), (I e Kt)C)Z_l)
= N (2¢; e, X¢)

= With Kt ZtCT(CEtCT —|— R) (Kalman Gain)




From Bayes Filter to Kalman Filter

Blends between our previous estimate 4+ and the discrepancy between our
sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain.
And this depends on a formula based on the errors of sensing etc. In fact it
depends on the ratfio between our uncertainty ¥ and the uncertainty of our

sensor observations R.

ﬁt -+ Kt(Zt — C/j)

N

old mean Kalman
Gain



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(x¢) =n p(z|x;) Bel(x)
——— N —
N (zt;Cx¢t,R) N (x¢;a¢,2¢)

= N(Xt; U Kt(Zt — Cﬂ), (I e Kt)C)Z_l)
= N (2¢; e, X¢)

= With Kt ZtCT(CEtCT —|— R) (Kalman Gain)




Kalman Filter Algorithm

= For each step, do:

= Apply motfion model (prediction step)

[y = Apg 1 + Buy
3, =AZA' +Q

= Apply sensor model (correction step)

pe = i+ Ky(ze — Cjay)
Et - (I — KtC)f]t

= With Kt = itCT(CStCT —|— R)_l




Kalman Filter Algorithm

Prediction & Correction steps
= For each step, do: can happen in any order.

= Apply motion model (prediction step)

[y = Apg 1 + Buy
3, =AZA' +Q

= Apply sensor model (correction step)

pe = i+ Ky(ze — Cjay)
Et - (I — KtC)f]t

- Ky = 3,C'(CE,C" +R) !




Kalman Filter Algorithm

Prediction & Correction steps
can happen in any order.




Complexity

= Highly efficient. Polynomial in the measurement dimensionality k and state

dimensionality n
O(k2'376 1+ 7’L2)

ptimal for linear Gaussian systems

= But most robots are nonlinear! This is why in practice we use Extended Kalman
Filters and other approaches.




Code Examples and Tasks

= KF, EKF, UKF

» Kalman Filter: https://qithulb.com/unr-
arl/drones _demystified/tree/master/matlab/state-
estimation/kalman-filter



https://github.com/unr-arl/drones_demystified/tree/master/matlab/state-estimation/kalman-filter

FiInd out more

» Nhitp://www.autonomousrobotslab.com/the-kalman-filter.ntml

» Nhitp://aerostudents.com/files/probability AndStatistics/probabilityTheoryFullV
ersion.pdf

» nhitp://www.cs.unc.edu/~welch/kalman/

= http://home.wlu.edu/~levys/kalman_tutorial/

https://qithub.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

» Nhitp://www.autonomousroboftslab.com/literature-and-links.html



http://www.autonomousrobotslab.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.autonomousrobotslab.com/literature-and-links.html

I T_Thanﬁu!
(Rledse ask your question



