
CS491/691: Introduction to Aerial Robotics

Dr. Kostas Alexis (CSE) 

Topic: LQR Flight Control



The Aerial Robot Loop

 How to design the
flight control of an
aerial robot and
program its autopilot.

Section 3 of our course



MATLAB Simulink

 Simulink® is a block diagram environment for

multidomain simulation and Model-Based Design. It

supports simulation, automatic code generation, and

continuous test and verification of embedded

systems.

 Simulink provides a graphical editor, customizable

block libraries, and solvers for modeling and simulating

dynamic systems. It is integrated with MATLAB®,

enabling you to incorporate MATLAB algorithms into

models and export simulation results to MATLAB for

further analysis.

http://www.mathworks.com/solutions/model-based-design/


MATLAB Simulink
 Building the Model

 Simulink® provides a set of predefined blocks that you can
combine to create a detailed block diagram of your system.
Tools for hierarchical modeling, data management, and
subsystem customization enable you to represent even the
most complex system concisely and accurately.

 Selecting Blocks

 Continuous and discrete dynamics blocks, such as 
Integration and Unit Delay

 Algorithmic blocks, such as Sum, Product, and Lookup Table

 Structural blocks, such as Mux, Switch, and Bus Selector

 Customized blocks

 Building and Editing the Model

 You build a model by dragging blocks from the Simulink 
Library Browser into the Simulink Editor. You then connect 
these blocks with signal lines to establish mathematical 
relationships between system components.

 The Simulink Editor gives you complete control over what you 
see and use within the model.

http://www.mathworks.com/discovery/block-diagram.html


MATLAB Simulink
 Simulating the Model

 You can simulate the dynamic behavior of your system and view
the results as the simulation runs. To ensure simulation speed and
accuracy, Simulink provides fixed-step and variable-step ODE
solvers, a graphical debugger, and a model profiler.Selecting
Blocks

 Choosing a Solver

 Solvers are numerical integration algorithms that compute the 
system dynamics over time using information contained in the 
model. Simulink provides solvers to support the simulation of a 
broad range of systems, including continuous-time (analog), 
discrete-time (digital), hybrid (mixed-signal), and multirate systems 
of any size.

 Running the Simulation

 Normal (the default), which interpretively simulates your model

 Accelerator, which increases simulation performance by creating 
and executing compiled target code but still provides the 
flexibility to change model parameters during simulation

 Rapid Accelerator, which can simulate models faster than 
Accelerator mode by creating an executable that can run 
outside Simulink on a second processing core



MATLAB Simulink
 Analyzing Simulation Results

 After running a simulation, you can analyze the simulation results
in MATLAB and Simulink. Simulink includes debugging tools to help
you understand the simulation behavior.

 Viewing Simulation Results

 You can visualize the simulation behavior by viewing signals with 
the displays and scopes provided in Simulink. You can also view 
simulation data within the Simulation Data Inspector, where you 
can compare multiple signals from different simulation runs.

 Alternatively, you can build custom HMI displays using MATLAB, or 
log signals to the MATLAB workspace to view and analyze the 
data using MATLAB algorithms and visualization tools.

 Debugging the Simulation

 Simulink supports debugging with the Simulation Stepper, which 
lets you step back and forth through your simulation viewing data 
on scopes or inspecting how and when the system changes 
states.

 With the Simulink debugger you can step through a simulation 
one method at a time and examine the results of executing that 
method. As the model simulates, you can display information on 
block states, block inputs and outputs, and block method 
execution within the Simulink Editor.



Linear Quadratic Regulator

 Theorem: Consider the system: and the performance index:

 where Q=MTM, R is symmetric and positive definite, (A,B) is stabilizable, and (A,M) is

detectable. The optimal control is:

 where P is the symmetric positive semidefinite solution of the Algebraic Riccati

Equation (ARE):



Design LQR Servo Control

 State-Space Equations for an Airframe

 Nonlinear Component of the State-Space 

Equation

Based on: 

http://www.mathworks.com/help/control/getst

art/design-an-lqr-servo-controller-in-

simulink.html

http://www.mathworks.com/help/control/getstart/design-an-lqr-servo-controller-in-simulink.html


Design LQR Servo Control

 Trimming

 For LQG design purposes, the nonlinear
dynamics are trimmed at ϕ=15 and p, q, r,

and θ set to zero. Since u, v, and w do not

enter into the nonlinear term in the

preceding figure, this amounts to linearizing
around (θ,ϕ)=(0,15) with all remaining

states set to zero.



Design LQR Servo Control

 Trimming

 For LQG design purposes, the nonlinear
dynamics are trimmed at ϕ=15 and p, q, r,

and θ set to zero. Since u, v, and w do not

enter into the nonlinear term in the

preceding figure, this amounts to linearizing
around (θ,ϕ)=(0,15) with all remaining

states set to zero.



Design LQR Servo Control

 Problem Definition

 The goal to perform a steady coordinated

turn, as shown in this figure.

 Aircraft Making a 60° Turn

 To achieve this goal, you must design a
controller that commands a steady turn by
going through a 60° roll. In addition, assume
that θ, the pitch angle, is required to stay as
close to zero as possible.



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 LQR Servo Control

% Add integrator state dz/dt = -phi

A_aug = [zeros(1,8) -1; zeros(8,1) A15];

B_aug = [zeros(1,4) ; B];

% LQR gain synthesis

Q = blkdiag(1,0.1*eye(6),1000,1);

R = diag([10,50,1,1]);

K_lqr = lqr(A_aug,B_aug,Q,R);



Design LQR Servo Control

 Modeling
% State vector = [u,v,w,p,q,r,theta,phi]

%     u,v,w: linear velocities

%     p,q,r: roll, pitch, yaw rates

%     theta: pitch angle 

%     phi: bank angle

% Linear dynamics

A = [-0.0404    0.0618    0.0501   -0.0000   -0.0005    0.0000 

-0.1686   -1.1889    7.6870         0    0.0041         0

0.1633   -2.6139   -3.8519    0.0000    0.0489   -0.0000 

-0.0000   -0.0000   -0.0000   -0.3386   -0.0474   -6.5405  

-0.0000    0.0000   -0.0000   -1.1288   -0.9149   -0.3679  

-0.0000   -0.0000   -0.0000    0.9931   -0.1763   -1.2047 

0         0    0.9056         0         0   -0.0000

0         0   -0.0000         0    0.9467   -0.0046];

A = [A, zeros(8,2)];

B =[ 20.3929   -0.4694   -0.2392   -0.7126

0.1269   -2.6932    0.0013    0.0033

-64.6939  -75.6295    0.6007    3.2358

-0.0000         0    0.1865    3.6625

-0.0000         0   23.6053    5.6270

-0.0001         0    3.9462  -41.4112

0         0         0         0

0         0         0         0];



Design LQR Servo Control

 Modeling
% Trim nonlinear dynamics about phi=15 degrees with p,q,r,theta

small.

% Note: Since 

%          * u,v,w don't enter the nonlinear terms

%          * theta=0 during the maneuver (cancels the trim 

values of p,q,r)

%       this is equivalent to linearizing about 

x=[0,0,0,0,0,0,0,phi]

g = 32.2;

th0 = 0;

ph0 = 15*pi/180;  % 15 degrees

q0 = 0;

r0 = 0;

A_nl = [...

0  0 -g*cos(th0) 0; ...

0  0 -g*sin(th0)*sin(ph0) g*cos(th0)*cos(ph0); ...

0  0 -g*sin(th0)*cos(ph0) -g*cos(th0)*sin(ph0); ...

0  0  0  0; ...

0  0  0  0; ...

0  0  0  0; ...

cos(ph0)  -sin(ph0) 0  -q0*sin(ph0)-r0*cos(ph0); ...

sin(ph0)*tan(th0)  cos(ph0)*tan(th0) ...

(q0*sin(ph0)+r0*cos(ph0))*(1+tan(th0)^2) 

(q0*cos(ph0)-r0*sin(ph0))*tan(th0)];

A15 = A + [zeros(8,4) A_nl];



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 Linear Response



Design LQR Servo Control

 Nonlinear Response



Design LQR Servo Control

 LQR Servo Control

% Add integrator state dz/dt = -phi

A_aug = [zeros(1,8) -1; zeros(8,1) A15];

B_aug = [zeros(1,4) ; B];

% LQR gain synthesis

Q = 10*blkdiag(100,1*eye(6),1000,1);

R = diag([10,50,1,1]);

K_lqr = lqr(A_aug,B_aug,Q,R);



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 Linear Response



Design LQR Servo Control

 Nonlinear Response



Design LQR Servo Control

 LQR Servo Control

% Add integrator state dz/dt = -phi

A_aug = [zeros(1,8) -1; zeros(8,1) A15];

B_aug = [zeros(1,4) ; B];

% LQR gain synthesis

Q = blkdiag(1,0.1*eye(6),1000,1);

R = 100*diag([10,50,1,1]);

K_lqr = lqr(A_aug,B_aug,Q,R);



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 Linear Response



Design LQR Servo Control

 Nonlinear Response



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 Linear Response



Design LQR Servo Control

 Nonlinear Response



Design LQR Servo Control

 SIMULINK design



Design LQR Servo Control

 Linear Response



Design LQR Servo Control

 Nonlinear Response



LQR in Python

 Python implementation of LQR:

 For continuous systems

 For discrete systems



Plot expected by your assignment



More Tools for Research
 Coaxial Helicopter System Identification, Modeling and Control

 Download URL: http://goo.gl/4Ox1o1

http://goo.gl/4Ox1o1


Find out more

 http://www.kostasalexis.com/pid-control.html

 http://www.kostasalexis.com/lqr-control.html

 http://www.kostasalexis.com/linear-model-predictive-control.html

 http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum

&section=ControlStateSpace

 http://www.kostasalexis.com/literature-and-links.html

http://www.kostasalexis.com/pid-control.html
http://www.kostasalexis.com/lqr-control.html
http://www.kostasalexis.com/linear-model-predictive-control.html
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=ControlStateSpace
http://www.kostasalexis.com/literature-and-links.html


Thank you! 
Please ask your question!


