

The Aerial Robot Loop

What is Path Planning?

Determining the robot path based on a set of goals and objectives, a set of robot constraints and subject to a representation and map of the

environment.

What is Motion Planning?

Hawk Navigation

Eagle hunting

Cheetah running

Nadia Comaneci, First "10", 1976

Main Topics of Path Planning

Motion Planning

Geometric representations and transformations

The robot configuration space

Sampling-based motion planning

Combinatorial motion planning

Feedback motion planning

- Decision-theoretic planning
 - Sequential decision theory
 - Sequential decision theory
 - Sensors and information
 - Planning under uncertainty

- Planning Under Differential Constraints
 - Differential models
 - Sampling-based planning under differential constraints
 - System theory and analytical techniques

Robots exist in many configurations

Overview of Concepts

- Planning Tasks
 - Navigation
 - Coverage
 - Localization
 - Mapping

- Properties of the Robot
 - Degrees of Freedom
 - Non/Holonomic
 - Kinematic vs Dynamic

- Algorithmic Properties
 - Optimality
 - Computational Cost
 - Completeness
 - Resolution completeness
 - Probabilistic completeness
 - Online vs Offline
 - Sensor-based or not
 - Feedback-based or not

Indicative Examples

	1	2	3	4
	5	6	7	8
	9	10	11	12
	13	14	15	
(b)				

Example of a world (and a robot)

Fundamental Problem of Path Planning

Problem Statement:

Compute a continuous sequence of collision-free robot configurations connecting

the initial and goal configurations.

Geometry of the environment

 Geometry and kinematics of the robot

Initial and goal configurations

Path Planner

Collision-free path

Fundamental Problem of Path Planning

Problem Statement:

 Compute a continuous sequence of collision-free robot configurations connecting the initial andgoal configurations.

Motion Planning Statement for collision-free navigation

If W denotes the robot's workspace, and $W0_i$ denotes the i-th obstacle, then the robot's free space, W_{free} , is defined as: $W_{free} = W - (\cup W0_i)$ and a path c is $c: [0,1] \rightarrow W_{free}$, where c(0) is the starting configuration q_{start} and c(1) is the goal configuration q_{goal} .

Continuous-Time Trajectory Optimization for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland Siegwart and Enric Galceran

Coverage Path Planning Problem

Problem Statement:

Consider a 3D structure to be inspected and a system with its dynamics and constraints and an integrated sensor, the limitations of which have to be respected. The 3D structure to be inspected is represented with a geometric form and the goal is to calculate a path that provides the set of camera viewpoints that ensure full coverage subject to the constraints of the robot and the environment.

- Geometry of the environment
- Geometry and kinematics of the robot
- Structure to be inspected

Path Planner Full coverage path

Three-dimensional Coverage Path Planning via Viewpoint Resampling and Tour Optimization using Aerial Robots

A. Bircher, K. Alexis, M. Kamel, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart

Exploration of Unknown Environments

Problem Statement:

Consider a 3D bounded space V unknown to the robot. The goal of the autonomous exploration planner is to determine which parts of the initially unmapped space are free V_{free} or occupied V_{occ} and essenting derive the 3D

geometric model of the world.

Online 3D Mapping

Path Planner Efficient exploration per step of execution.

Code Example

- Python examples on Boundary Value Solvers
 - https://github.com/unr-arl/DubinsAirplane/tree/52ce13e4a6dea9005da702095e6b0acbb175e008
 - https://github.com/unr-arl/drones_demystified/tree/master/python/DubinsCar
 - https://github.com/unr-arl/drones_demystified/tree/master/python/HAV_BVS

Find out more

- http://www.autonomousrobotslab.com/holonomic-vehicle-bvs.html
- <u>http://www.autonomousrobotslab.com/dubins-airplane.html</u>
- http://www.autonomousrobotslab.com/collision-free-navigation.html
- http://www.autonomousrobotslab.com/structural-inspection-pathplanning.html
- http://ompl.kavrakilab.org/
- http://moveit.ros.org/
- http://planning.cs.uiuc.edu/
- http://www.autonomousrobotslab.com/literature-and-links1.html

