Drones Demystified!

K. Alexis, C. Papachristos, Autonomous Robots Lab, University of Nevada, Reno
' A. Tzes, Autonomous Robots & Intelligent Systems Lab, NYU Abu Dhabi

Drones Demystified!
Topic: Introduction to Path Planning

How do | plan
my maotion
and actionse

The Aerial Robot Loop

= Path planning in order to
compute the ath the
robot should follow to
ensure safe navigation and
execute the desired
mission.

Mission Results

User Command

Path Planning
Module

o
>

A 4

®

Section 4 of our course

The motion planning problem

Consider a dynamical control system defined by an ODE of the form:
2 = F,u),x(0) = Xy (1)
Where is x the state, u is the control.

Given an obstacle set X,,5, and a goal set X4, the objective of the motion

planning problem is to find, if it exists, a control signal u such that the solution
of (1) satisfies x(t) & X,ps for all t € R*, and x(t) € X;,4, for all t > T, for some

finite T = 0. Return failure if no such control signal exists.

Basic problem in robotics

Provably hard: a basic version of it (the Generalized Piano Mover's problem)
Is known to be PSPACE-hard.

Sampling-based algorithms

= A recently proposed class of motion planning algorithms that has been very

successful in practice is based on (batch or incremental) sampling methods:
solutions are computed based on samples drawn from some distribution.
Sampling algorithms retain some form of completeness, e.g., probabilistic or
resolution completeness.

cremental sampling methods are particularly attractive:

= |[ncremental sampling algorithms lend themselves easily to real-time, on-line
implementation.

= Applicable to very generic dynamical systems.
= Do not require the explicit enumeration of constraints.

» Adaptively multi-resolution methods (i.e. make your own grid as you go along, up
to the necessary resolution).

Probabilistic RoadMaps (PRM)

» |ntroduced by Kavraki and Latombe in 1994.

= Mainly geared towards “multi-query” motion planning problems.

» |dea: build (offine) a graph (i.e., the roadmap) representing the
“Yconnectivity” of the environment — use this roadmap to find paths quickly at
run-time.

Learning/pre-processing phase:

= Sample n points from X¢,ee = [0,1]1%\X,ps-

= Try to connect these points using a fast “local planner” (e.g. ignore obstacles).
= |f connection successful (i.e. no collisions), add an edge between the points.
= At run-time:

= Connect the start and end goal to the closest nodes in the roadmap.

= Find a path on the roadmap.

= First planner ever to demonstrate the ability to solve generic planning
problems in > 4-5 dimensions!

Probabilistic RoadMap example
- a—y,

LN

= “Practical” algorithm:

= |ncremental construction.
» Connects points within a radius r, starfing from *“closest” ones.

= Do not attempt to connect points that are already on the same connected
component of the RPM.

= What kind of properties does this algorithm havee¢ Will if find a solution if there
is onee WIill that be an optimal solutione What is the complexity of the
algorithm?@

Probabillistic Completeness

= Definition — Probabilistic Completeness:
= An algorithm ALG is probabilistically complete if, for any robustly feasible

moftion planning problem defined by P =

(Xfree: xinit; Xgoal), Then:

lim Pr(ALG returns a solution P) = 1

N—>o00

“relaxed’ notion of completeness

Applicable to motion planning problems with a robust solution. A robust
solutions remains a valid solution even when the obstacles are “dilated” by

small small §.

robust

NOT robust

Asymptotic Optimality

Definition — Asymptotic Optimality:

An algorithm ALG is asymptotically optimal if, for any motion planning
problem defined by P = (Xfree,xmit,Xgoal) and function ¢ that admit a robust
optimal solution with finite cost c¢*,

P(im ¥ =c}) = 1

The function ¢ associates to each path ¢ a non-negative c(o), €.9. c(o) =
fa X(s)ds
The definition is applicable to optimal motion planning problem with a robust

optimal solution. A robus’r op’nmol solu’rlon Is such that it can be obtained as
a limit of robust

NOT robus’r

robust

Simple PRM (sPRM)

V Ginic} U {SampleFree}icy, y_1; E < 0
foreach v € V do:
U < Near(G = (V,E),v,H\{v};
foreach u € U do:
if CollisionFree(v,u) then E <« E U {(v,u)}, (u,v)}
return G = (V,E);

= The simplified version of the PRM algorithm has been shown to be
probabilistically complete.

= Moreover, the probability of success goes to 1 exponentially fast, if the
environment satisfies “*good visibility” conditions.

= New key concept: combinatorial complexity vs “visibility”.

Remarks on PRM

= SPRM is probabilistically complete and asymptotically optimal.

= PRM is probabilistically complete but NOT asymptotically optimal.
= Complexity for N samples: 0(N?).

Practical complexity-reduction tfricks:

= k-nearest neighbors: connect to the k nearest neighbors. Complexity O(NlogN) .
(Finding nearest neighbors takes logN time.)

» Bounded degree: connect at most k nearest neighbors among those within radius
r.

= Variable radius: change the connection radius r as a function of N. Howe

Rapidly-exploring Random Trees

Intfroduced by LaValle and Kuffner in 1998.
Appropriate for single-query planning problems.

ldea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

At each step: sample one point from X¢.... and fry to connect it fo the
closest vertex in the tree.

Very effective in practice, “Voronoi bias”.

Rapidly-exploring Random Trees

RRT
Ve« {xinith E < 0;
fori=1,..., N do:

Xrand < SampleFree;
Xnearest < Nearest(G = (V,E), Xyqna);

Xnew < S teer(xnearestr xrand);
if ObstacleFree(Xpeqrest» Xnew) then:

VeV U{xpewh E < EU{(Xnearest: Xnew)};
return ¢ = (V,E);

= The RRT algorithm is probabilistically complete

= The probability of success goes to 1 exponentially fast, if the environment
satisfies certain “*good visibility” condifions.

Rapidly-exploring Random Trees (RRTs)

.

X free

o

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

9

X free

.

Rapidly-exploring Random Trees (RRTs)

9

X free

Rapidly-exploring Random Trees (RRTs)

.

X free

o

Rapidly-exploring Random Trees (RRTs)

X free

RRTs in action

»

ETHzirich Ly

Autonomous
Systems Lab

—— : N Aut()n()mé)usl\R()l)()tic i\eliiall rlgizl(‘king,g\?()i(lzmce, and
7 3 & Seeking of a Mobile Human Subject
y v
Continuous- Time _Trajectory Optimization
for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto,
Roland Siegwart and Enric Galceran

Christos Papachristos, Dimos Tzoumanikas, Kostas Alexis, and Anthony Tzes

» Great results for collision-avoidance of UAVs

» |ntegral component of several, higher-level algorithms (e.g. exploration and
inspection)

Limitations of such incremental sampling methods

= No characterization of the quality (e.g. “cost”) of the trajectories returned by
the algorithm.
Keep running the RRT even after the first solution has been obtained, for as long

as possible (given the real-time constraints), hoping to find a better path than
the one already available.

No systematic method for imposing temporal/logical constraints, such as,
e.g. the rules of the road, complicated mission objectives, ethical/ deonfic

code.

RRTs don't have the best behavior

= Let Y,RRT pbe the cost of the best path in the RRT at the end of iteration n

= |t is easy to show that Y,RRT converges (to a random variable), i.e.:

lim YR = YSRT
n—00

= The random variable YERT is sampled from a distribution with zero mass at the
optimum:

Theorem - Almost sure suboptimality of RRTs

If a set of sampled optimal paths has measure zero, the sampling distribution is
absolufely continuous with positive density in X¢,.,, and d = 2, then the best path

in the RRT converges to a sub-optimal solution almost surely, i.e.:
Pr[YERRT > c*] =1

Some remarks on that negative result

Intuition: RRT does not saftisfy a necessary condition for asymptotic optimality,
l.e., that the root node has infinitely many subtrees that extend at least a
distance e away from x;,;;.

The RRT algorithm “traps” itself by disallowing new better paths to emerge.
euristics such as

= Running the RRT multiple times

= Running multiple times concurrently

= Deleting and rebuilding parts of the tree etc.

Work better than the standard RRT, but cannot remove the sub-optimal behavior.

How can we do better?

Rapidly-exploring Random Graphs (RRGs)

V e« {Xinith E < 0;
fori=1,....N do:
Xrand < SampleFree;
Xnearest < Nearest(G = (V, E), Xrqna);

Xnew < Steer(xnearestr xrand);
if ObstacleFree(Xpeqrest» Xnew) then:

. 1 dv)n1/d
Xnear < Near (G = (V,E), xpew, Min{yrpe (og(car)) ,77});

cardV

Vel u {xnew}; E<FEU {(xnearest' DA e —— xnew)};
foreach x,., € X,,0qr dO:

if CollisionFree(Xpeqr Xnew) then E « E U {(Xpeqrr Xnew)» Knearr Xnew) };
return ¢ = (V,E);

= At each iteration, the RRG tries to connect to the new sample all vertices in
a ball radius r,, centered at it. (Or simply default to the nearest one if such a
ball is empty).

= |n general, the RRG builds graphs with cycles.

Properties of RRGs

Theorem - Probabilistic completeness

Since VRRG = IRRT “for gl n, it follows that RRG has the same completeness properties of
RRT, i.e.

Pr|V:fRE N Xyoq = 0] = O(e™P™)

Theorem - Asymptotic optimality

If the Near procedure returns all nodes in ¥V within a ball of volume

=EL y > 24(1 + 1/,),

Under some additional technical assumptions (e.g., on the sampling distribution, on the €
clearance of the optimal path, and on the continuity of the cost function), the best path

in the RRG converges to an optimal solution almost surely, i.e.:
Pr[YBRG = ¢*] =1

Vol =y

Computational complexity

= Af each iteration, the RRG algorithm executes 0(logn) extra calls to
ObstacleFree when compared to the RRT.

= However, the complexity of the Nearest procedure is Q(logn). Achieved if
using, e.g., a Balanced-Box Decomposition (BBD) Tree.

Theorem - Asymptotic (Relative) Complexity

There exists a constant g € R, such that
OPSfRG
OPSRRT =

l

= |n other words, the RRG algorithm has no substantial computational
overhead over RRT, and ensures asymptotic optimality.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties @

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

Rapidly-exploring Random Tree-star (RRT¥)

Ve {xpnieh E < 0;
fori=1,...,N do:
Xrand < SampleFree;
Xnearest < Nearest(G = (V,E), Xrqna);

Xnew < Steer(xnearest' xrand);

: 1 av)l/d
Xnear < Near (G = (V,E), Xpew, min{ygre (M)) 77}>)

cardV
Velu {xnew};

Xmin < Xnearest) Cmin < COSt(xnearest) + C(Line(xnearest:xnew))
foreach x,..r € X, eqr dO:

if CollisionFree(Xpears Xnew) /N Cost(Xpear) + c(Line(Xnear Xnew)) < Cost(xneqr) then:
Xparent < Parent(Xpeqr);

E < E\{(xparenttxnear)} U {(xnew» xnear)};

return ¢ = (V,E);

Code Examples and Tasks

» nhitps://github.com/unr-

arl/drones demystified/tree/master/matlab/path-planning/rrt
+ + ®» hitps://qgithub.com/unr-

arl/drones demystified/tree/master/ROS/path-
planning/structural-inspection

» nhitps://github.com/unr-
arl/drones demystified/tree/master/ROS/path-

‘) . R O S planning/autonomous-exploration

https://github.com/unr-arl/drones_demystified/tree/master/matlab/path-planning/rrt
https://github.com/unr-arl/drones_demystified/tree/master/ROS/path-planning/structural-inspection
https://github.com/unr-arl/drones_demystified/tree/master/ROS/path-planning/autonomous-exploration

FiInd out more

» Nhitp://www.autonomousroboftslab.com/holonomic-vehicle-bvs.himl

» hitp://www.autonomousrobotslab.com/dubins-airplane.html

» Nhitp://www.autonomousrobotslab.com/collision-free-navigation.himl

» Nhitp://www.autonomousrobotslab.com/structural-inspection-path-
planning.html

» hitp://ompl.kavrakilab.org/

» Nhitp://moveit.ros.org/

» hitp://planning.cs.viuc.edu/

» Nhitp://www.autonomousroboftslab.com/literature-and-links1.html

http://www.autonomousrobotslab.com/holonomic-vehicle-bvs.html
http://www.autonomousrobotslab.com/dubins-airplane.html
http://www.autonomousrobotslab.com/collision-free-navigation.html
http://www.autonomousrobotslab.com/structural-inspection-path-planning.html
http://ompl.kavrakilab.org/
http://moveit.ros.org/
http://planning.cs.uiuc.edu/
http://www.autonomousrobotslab.com/literature-and-links1.html

I T_Thanﬁu!
(Rledse ask your question

