
CS491/691: Introduction to Aerial Robotics

Dr. Kostas Alexis (CSE) 

Topic: Sampling-based Motion Planning



The motion planning problem

 Consider a dynamical control system defined by an ODE of the form:

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥𝑖𝑛𝑖𝑡 (1)

 Where is 𝑥 the state, 𝑢 is the control.

 Given an obstacle set 𝑋𝑜𝑏𝑠, and a goal set 𝑋𝑔𝑜𝑎𝑙, the objective of the motion

planning problem is to find, if it exists, a control signal 𝑢 such that the solution
of (1) satisfies 𝑥 𝑡 ∉ 𝑋𝑜𝑏𝑠 for all 𝑡 ∈ 𝑅+, and 𝑥 𝑡 ∈ 𝑋𝑔𝑜𝑎𝑙 for all 𝑡 > 𝑇, for some

finite 𝑇 ≥ 0. Return failure if no such control signal exists.

 Basic problem in robotics

 Provably hard: a basic version of it (the Generalized Piano Mover’s problem)

is known to be PSPACE-hard.



Motion planning in practice

 Many methods have been proposed to solve such problems in practical

applications:

 Algebraic planners: Explicit representation of obstacles. Use complicated algebra

(visibility computations/projections) to find the path. Complete, but impractical.

 Discretization + graph search: Analytic/grid-based methods do not scale well to

high dimensions. Graph search methods (A*, D*, etc.) can be sensitive to graph

size. Resolution complete.

 Potential fields/navigation functions: Virtual attractive forces towards the goal,
repulsive forces away from the obstacles. No completeness guarantees; unless

“navigation functions” are available – very hard to compute in general.

 These algorithms achieve tractability by foregoing completeness altogether,

or achieving weaker forms of it, e.g. resolution completeness.



Sampling-based algorithms

 A recently proposed class of motion planning algorithms that has been very

successful in practice is based on (batch or incremental) sampling methods:

solutions are computed based on samples drawn from some distribution.

Sampling algorithms retain some form of completeness, e.g., probabilistic or

resolution completeness.

 Incremental sampling methods are particularly attractive:

 Incremental sampling algorithms lend themselves easily to real-time, on-line

implementation.

 Applicable to very generic dynamical systems.

 Do not require the explicit enumeration of constraints.

 Adaptively multi-resolution methods (i.e. make your own grid as you go along, up

to the necessary resolution).



Probabilistic RoadMaps (PRM)

 Introduced by Kavraki and Latombe in 1994.

 Mainly geared towards “multi-query” motion planning problems.

 Idea: build (offline) a graph (i.e., the roadmap) representing the
“connectivity” of the environment – use this roadmap to find paths quickly at

run-time.

 Learning/pre-processing phase:

 Sample 𝑛 points from 𝑋𝑓𝑟𝑒𝑒 = [0,1]𝑑\𝑋𝑜𝑏𝑠.

 Try to connect these points using a fast “local planner” (e.g. ignore obstacles).

 If connection successful (i.e. no collisions), add an edge between the points.

 At run-time:

 Connect the start and end goal to the closest nodes in the roadmap.

 Find a path on the roadmap.

 First planner ever to demonstrate the ability to solve generic planning

problems in > 4-5 dimensions!



Probabilistic RoadMap example

 “Practical” algorithm:

 Incremental construction.

 Connects points within a radius r, starting from “closest” ones.

 Do not attempt to connect points that are already on the same connected

component of the RPM.

 What kind of properties does this algorithm have? Will it find a solution if there

is one? Will that be an optimal solution? What is the complexity of the

algorithm?



Probabilistic Completeness

 Definition – Probabilistic Completeness:

 An algorithm ALG is probabilistically complete if, for any robustly feasible

motion planning problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , then:

lim
𝑁→∞

Pr 𝐴𝐿𝐺 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃 = 1

 A “relaxed” notion of completeness

 Applicable to motion planning problems with a robust solution. A robust

solutions remains a valid solution even when the obstacles are “dilated” by

small small 𝛿.

robust NOT robust



Asymptotic Optimality

NOT robust robust

 Definition – Asymptotic Optimality:

 An algorithm ALG is asymptotically optimal if, for any motion planning

problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 and function 𝑐 that admit a robust

optimal solution with finite cost 𝑐∗,

𝑃 lim
𝑖→∞

𝑌𝑖
𝐴𝐿𝐺 = 𝑐∗ = 1

 The function 𝑐 associates to each path 𝜎 a non-negative 𝑐(𝜎), e.g. 𝑐 𝜎 =

𝜎׬ Χ 𝑠 𝑑𝑠

 The definition is applicable to optimal motion planning problem with a robust

optimal solution. A robust optimal solution is such that it can be obtained as

a limit of robust (non-optimal) solutions.



Complexity

 How can we measure complexity for an algorithm that does not necessarily

terminate?

 Treat the number of samples as the “size of the input” (Everything else stays

the same).

 Also, complexity per sample: how much effort (time/memory) is needed to

process one sample.

 Useful for comparison of sampling-based algorithms.

 Cannot compare with deterministic, complete algorithms.



Simple PRM (sPRM)

 The simplified version of the PRM algorithm has been shown to be

probabilistically complete.

 Moreover, the probability of success goes to 1 exponentially fast, if the

environment satisfies “good visibility” conditions.

 New key concept: combinatorial complexity vs “visibility”.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ∪ 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒𝑖 𝑖=1,,…,𝑁−1; 𝐸 ← 0;

foreach 𝑣 ∈ 𝑉 do:

𝑈 ← 𝑁𝑒𝑎𝑟(𝐺 = 𝑉, 𝐸 , 𝑣, 𝑟)\ 𝑣 ;

foreach 𝑢 ∈ 𝑈 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑣, 𝑢) then 𝐸 ← 𝐸 ∪ 𝑣, 𝑢 , (𝑢, 𝑣)}
return 𝐺 = 𝑉, 𝐸 ;

sPRM Algorithm



Remarks on PRM

 sPRM is probabilistically complete and asymptotically optimal.

 PRM is probabilistically complete but NOT asymptotically optimal.

 Complexity for N samples: 𝑂(𝑁2).

 Practical complexity-reduction tricks:

 k-nearest neighbors: connect to the k nearest neighbors. Complexity 𝑂 𝑁𝑙𝑜𝑔𝑁 .

(Finding nearest neighbors takes 𝑙𝑜𝑔𝑁 time.)

 Bounded degree: connect at most 𝑘 nearest neighbors among those within radius

𝑟.

 Variable radius: change the connection radius 𝑟 as a function of 𝑁. How?



Rapidly-exploring Random Trees

 Introduced by LaValle and Kuffner in 1998.

 Appropriate for single-query planning problems.

 Idea: build (online) a tree, exploring the region of the state space that can

be reached from the initial condition.

 At each step: sample one point from 𝑋𝑓𝑟𝑒𝑒, and try to connect it to the

closest vertex in the tree.

 Very effective in practice, “Voronoi bias”.



Rapidly-exploring Random Trees

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRT



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Voronoi bias

 Vertices of the RRT that are more “isolated” (e.g. in unexplored areas, or at

the boundary of the explored area) have the larger Voronoi regions – and

are more likely to be selected for extension.

Given 𝑛 sites in 𝑑 dimensions, the Voronoi diagram of the sites is a partition of ℝ𝑑

into regions, one region per site, such that all points in the interior of each region 

lie closer to that regions site than to any other site. 

Definition - Voronoi diagram:



RRTs in action

 Great results for collision-avoidance of UAVs

 Integral component of several, higher-level algorithms (e.g. exploration and
inspection)



Limitations of such incremental sampling methods

 No characterization of the quality (e.g. “cost”) of the trajectories returned by

the algorithm.

Keep running the RRT even after the first solution has been obtained, for as long

as possible (given the real-time constraints), hoping to find a better path than

the one already available.

 No systematic method for imposing temporal/logical constraints, such as,

e.g. the rules of the road, complicated mission objectives, ethical/ deontic

code.



Next RRT*

 Asymptotically optimal collision-free navigation.

Video Sertac Karaman, MIT



RRTs don’t have the best behavior

 Let 𝑌𝑛
𝑅𝑅𝑇 be the cost of the best path in the RRT at the end of iteration 𝑛

 It is easy to show that 𝑌𝑛
𝑅𝑅𝑇 converges (to a random variable), i.e.:

lim
𝑛→∞

𝑌𝑛
𝑅𝑅𝑇 =𝑌∞

𝑅𝑅𝑇

 The random variable 𝑌∞
𝑅𝑅𝑇 is sampled from a distribution with zero mass at the

optimum:

If a set of sampled optimal paths has measure zero, the sampling distribution is

absolutely continuous with positive density in 𝑋𝑓𝑟𝑒𝑒 and 𝑑 ≥ 2, then the best path

in the RRT converges to a sub-optimal solution almost surely, i.e.:

Pr 𝑌∞
𝑅𝑅𝑇 > 𝑐∗ = 1

Theorem – Almost sure suboptimality of RRTs



Some remarks on that negative result

 Intuition: RRT does not satisfy a necessary condition for asymptotic optimality,

i.e., that the root node has infinitely many subtrees that extend at least a

distance 𝜖 away from 𝑥𝑖𝑛𝑖𝑡.

 The RRT algorithm “traps” itself by disallowing new better paths to emerge.

 Heuristics such as

 Running the RRT multiple times

 Running multiple times concurrently

 Deleting and rebuilding parts of the tree etc.

Work better than the standard RRT, but cannot remove the sub-optimal behavior.

 How can we do better?



Rapidly-exploring Random Graphs (RRGs)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤, min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) then 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRG Algorithm

 At each iteration, the RRG tries to connect to the new sample all vertices in

a ball radius 𝑟𝑛 centered at it. (Or simply default to the nearest one if such a

ball is empty).

 In general, the RRG builds graphs with cycles.



Properties of RRGs

Since 𝑉𝑛
𝑅𝑅𝐺 = 𝑉𝑛

𝑅𝑅𝑇, for all 𝑛, it follows that RRG has the same completeness properties of

RRT, i.e.

Pr 𝑉𝑛
𝑅𝑅𝐺 ∩ 𝑋𝑔𝑜𝑎𝑙 = 0 = 𝑂(𝑒−𝑏𝑛)

Theorem – Probabilistic completeness

If the 𝑁𝑒𝑎𝑟 procedure returns all nodes in 𝑉 within a ball of volume

𝑉𝑜𝑙 = 𝛾
log 𝑛

𝑛
, 𝛾 > 2𝑑(1 + Τ1 𝑑),

Under some additional technical assumptions (e.g., on the sampling distribution, on the 𝜖
clearance of the optimal path, and on the continuity of the cost function), the best path

in the RRG converges to an optimal solution almost surely, i.e.:

Pr 𝑌∞
𝑅𝑅𝐺 = 𝑐∗ = 1

Theorem – Asymptotic optimality



Computational complexity

 At each iteration, the RRG algorithm executes 𝑂 log𝑛 extra calls to

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒 when compared to the RRT.

 However, the complexity of the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 procedure is Ω(logn). Achieved if

using, e.g., a Balanced-Box Decomposition (BBD) Tree.

 In other words, the RRG algorithm has no substantial computational

overhead over RRT, and ensures asymptotic optimality.

There exists a constant 𝛽 ∈ ℝ+ such that

lim
𝑖→∞

𝑠𝑢𝑝 𝐸
𝑂𝑃𝑆𝑖

𝑅𝑅𝐺

𝑂𝑃𝑆𝑖
𝑅𝑅𝑇 ≤ 𝛽

Theorem – Asymptotic (Relative) Complexity



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



Rapidly-exploring Random Tree-star (RRT*)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤 , min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ;
𝑥𝑚𝑖𝑛 ← 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡; 𝑐min ← 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 + 𝑐(𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤 )
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ^ 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝑐 𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 < 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟 then:

𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑟𝑒𝑛𝑡 𝑥𝑛𝑒𝑎𝑟 ;

𝐸 ← 𝐸\ 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑥𝑛𝑒𝑎𝑟 ∪ (𝑥𝑛𝑒𝑤, 𝑥𝑛𝑒𝑎𝑟) ;

return 𝐺 = 𝑉, 𝐸 ;

RRT* Algorithm



Summary

 Key idea in RRG/RRT*: to combine optimality and computational efficiency,

it is necessary to attempt connection to Θ(logN) nodes at each iteration.

 Reduce volume of the “connection ball” as log(𝑁)/𝑁;

 Increase the number of connections as log𝑁

 These principles can be used to obtain “optimal” versions of PRM etc.

Algorithm Probabilistic Completeness Asymptotic Optimality Computational Complexity

sPRM YES YES 𝑂(𝑁)

k-nearest PRM NO NO 𝑂(𝑙𝑜𝑔𝑁)

RRT YES NO 𝑂(𝑙𝑜𝑔𝑁)

PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRT* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)



RRT* in Action 



Find out more

 http://www.kostasalexis.com/autonomous-navigation-and-exploration.html

 http://www.kostasalexis.com/holonomic-vehicle-bvs.html

 http://www.kostasalexis.com/dubins-airplane.html

 http://www.kostasalexis.com/collision-free-navigation.html

 http://www.kostasalexis.com/structural-inspection-path-planning.html

 http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-

of-autonomy-and-decision-making-fall-2010/lecture-notes/

 http://ompl.kavrakilab.org/

 http://moveit.ros.org/

 http://planning.cs.uiuc.edu/

http://www.kostasalexis.com/holonomic-vehicle-bvs.html
http://www.kostasalexis.com/holonomic-vehicle-bvs.html
http://www.kostasalexis.com/dubins-airplane.html
http://www.kostasalexis.com/collision-free-navigation.html
http://www.kostasalexis.com/structural-inspection-path-planning.html
http://ompl.kavrakilab.org/
http://ompl.kavrakilab.org/
http://moveit.ros.org/
http://planning.cs.uiuc.edu/


References

 A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Structural
Inspection Path Planning via Iterative Viewpoint Resampling with Application to Aerial Robotics",
IEEE International Conference on Robotics & Automation, May 26-30, 2015 (ICRA 2015), Seattle,
Washington, USA

 Kostas Alexis, Christos Papachristos, Roland Siegwart, Anthony Tzes, "Uniform Coverage Structural
Inspection Path-Planning for Micro Aerial Vehicles", Multiconference on Systems and Control
(MSC), 2015, Novotel Sydney Manly Pacific, Sydney Australia. 21-23 September, 2015

 K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, "Aerial robotic contact-based inspection:
planning and control", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9485-5, ISSN:
0929-5593, http://dx.doi.org/10.1007/s10514-015-9485-5

 A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri and R. Siegwart "An Incremental Sampling–
based approach to Inspection Planning: the Rapidly–exploring Random Tree Of Trees", accepted
at the Robotica Journal (awaiting publication)

 A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Three-
dimensional Coverage Path Planning via Viewpoint Resampling and Tour Optimization for Aerial
Robots", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9517-1, ISSN: 1573-7527

 A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View"
Planner for 3D Exploration", IEEE International Conference on Robotics and Automation 2016
(ICRA 2016), Stockholm, Sweden (Accepted - to be presented)



Thank you! 
Please ask your question!


