
Autonomous Mobile Robot Design

Dr. Kostas Alexis (CSE) 

Topic: Guidance and Control – Introduction and PID Loops



Autonomous Robot Challenges

How do I control

where to go?
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What is it all about?

 Control theory is an interdisciplinary branch

of engineering and mathematics that

deals with the behavior of dynamical

systems with inputs, and how their behavior

is modified by feedback.



What is it all about?

 Control theory is an interdisciplinary branch

of engineering and mathematics that

deals with the behavior of dynamical

systems with inputs, and how their behavior

is modified by feedback.

 To do that in a systematic way, we should

develop a model-based approach on

control synthesis.



1. Modeling of Dynamic Systems

 Generic form of dynamic system:

 x is the state vector, u is the input vector.

 Generic linear state space form:

 And given specific output vector:



State Space Representation

 Generic linear (time invariant) state space form:

 A is the system matrix (nxn), B is the input matrix (nxp), C is the output matrix

(qxn), D is the feedforward matrix (qxp).

 In general a MIMO system (Multi-Input, Multi-Output)

 In fact a Linear Time Invariant system (LTI). More complex representations

exist.



Transfer Function Representation

 Linear time invariant can be represented in the frequency domain using the

Laplace Transform.

 Laplace Transform:

 Transfer function form to represent Single Input Single Output (SISO)

relationships:

 And equivalently:

 𝑝1…𝑝𝑛 correspond to the poles and 𝑧1…𝑧𝑚 to the zeros.



State Space to Transfer Function

 Transformation from state space to transfer function:

 Possibly leads to multiple transfer functions



Dynamic system example

 System ordinary differential equation:

 Or in state space form:

 Or in transfer function form:



2. Analysis of Dynamic Systems

 Time-Domain Response of an LTI system

 Frequency-Domain Response of an LTI system

 Stability of an LTI system



Time-Domain Response

 The time response of a linear dynamic system consists of the sum of the

transient response which depends on the initial conditions and the steady-

state response which depends on the system input.

 These correspond to the free (homogeneous or zero input) and the forced

(inhomogeneous or non-zero input) solutions of the governing differential

equations respectively.



Frequency-Domain Response

 All the examples presented in this tutorial are modeled by linear constant

coefficient differential equations and are thus linear time-invariant (LTI). LTI

systems have the extremely important property that if the input to the system

is sinusoidal, then the steady-state output will also be sinusoidal at the same

frequency but in general with different magnitude and phase. These

magnitude and phase differences as a function of frequency comprise

the frequency response of the system.

 The frequency response of a system can be found from the transfer function

in the following way: create a vector of frequencies (varying between zero

or "DC" to infinity) and compute the value of the plant transfer function at

those frequencies. If G(s) is the open-loop transfer function of a system and

ω is the frequency vector, we then plot G(jω) versus ω. Since G(jω) is a

complex number, we can plot both its magnitude and phase (the Bode Plot)

or its position in the complex plane (the Nyquist Diagram). Both methods

display the same information in different ways.



Stability

 Bounded Input Bounded Output (BIBO) sense: a system is stable if the output

remains bounded for all bounded (finite) inputs. Practically, this means that

the system will not “blow up” while in operation.

 Using transfer functions: the system is stable if ALL of the poles are in the left

complex plane. If any of them is on the right then the system is unstable. If

any of them has zero real component, the system is critically stable.
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Stability

 Bounded Input Bounded Output (BIBO) sense: a system is stable if the output

remains bounded for all bounded (finite) inputs. Practically, this means that

the system will not “blow up” while in operation.

 Using transfer functions: the system is stable if ALL of the poles are in the left

complex plane. If any of them is on the right then the system is unstable. If

any of them has zero real component, the system is critically stable.

Stable region

No oscillations

oscillations

oscillations



1st Order Systems

 First order system representation:

 With pole –𝒂, time constant 𝝉 and dcgain 𝒌𝒅𝒄

 Time constant is the value that the system reaches

63% of its steady-state value.



2nd Order Systems

 First order system representation:

 Or in transfer function form:

 dcgain:

 damping ratio: (if 𝜁 < 1 system is underdamped)

 natural frequency:

 poles/zeros:



2nd Order Systems

 Pole map



2nd Order Systems

 Time response



3. The Root Locus Method

 Consider a transfer function and a gain K:

 The closed-loop transfer function takes the form:

 Thus the closed-loop poles are the solutions of:

 And if we write:

 Then the poles are the solutions of:



Root Locus Method example

 Consider the transfer function:



Root Locus Method example

 Consider the transfer function:

 Use a single-gain Controller (K):



Root Locus Method example

 Consider the transfer function:

 Root locus for a gain K:



5. State Space Control

 Consider the system:

 How do we define observability?

 How do we define controllability?

 How do we design a simple controller to tune the dynamic response as

desired? To place the poles where desired?



State Space system Stability

 Consider the system:

 Stability: The system is stable if the eigenvalues of matrix 𝐴 are all with

negative real part.



State Space system Observability

 Consider the system:

 Observability: The system is observable if the initial state 𝑥0 can be

determined from the system output, 𝑦(𝑡), over some finite time 𝑡0 < 𝑡 < 𝑡𝑓. For

LTI systems, a system is observable if the observability matrix is of full rank.



Rank of a Matrix

 The rank of a matrix A is the dimension of the vector space generated (or

spanned) by its columns.

 This is the same as the dimension of the space spanned by its rows.

 Rank row = Rank column

 It is a measure of the "nondegenerateness" of the system of linear equations

and linear transformation encoded by A.

1 2 1
−2 −3 1
3 5 0



Rank of a Matrix

 The rank of a matrix A is the dimension of the vector space generated (or

spanned) by its columns.

 This is the same as the dimension of the space spanned by its rows.

 Rank row = Rank column

 It is a measure of the "nondegenerateness" of the system of linear equations

and linear transformation encoded by A.

1 2 1
−2 −3 1
3 5 0

Rank = 2



State Space system Controllability

 Consider the system:

 Controllability: A system is controllable if there exists a control input, 𝑢(𝑡), that

transfers any state of the system to zero in finite time. For LTI systems, a system

is controllable if the controllability matrix is of full rank.



Pole Placement

 Consider the system:

 Then the following structure is correct:



Pole Placement

 Assuming zero reference:

 The state space equations of the closed loop system take the form:

 The pole placement techniques is about how to find the gain matrix K such

that the poles of the closed-loop system go to desired locations. This is under

the assumption of an LTI system and infinite actuator dynamic range and

bandwidth.
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MAV Dynamics
 To append the forces and moments we need to

combine their formulation with

 Next step: append the MAV forces

and moments



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



Control System Block Diagram

 There are simpler



Control System Block Diagram

 Simplified loop



Controlling a Multirotor along the x-axis

 Assume a single-axis case.

 The system has to coordinate its

pitching motion and thrust to move to

the desired point ahead of its axis.

 Roll is considered to be zero, yaw is

considered to be constant. No initial

velocity. No motion is expressed in any

other axis.

 A system of only two degrees of

freedom.



Controlling a Multirotor along the x-axis

 Simplified linear dynamics



Controlling a Multirotor along the x-axis

 Explanation of translation model



Controlling a Multirotor along the x-axis

 Simplified linear dynamics

How does this system behave?



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis

 Simplified linear dynamics

How to control this system?

Most common way: use of PD

controllers



Controlling a Multirotor along the x-axis

 Decoupled Control Structure



Controlling a Multirotor along the x-axis

 Decoupled Control Structure

How to select the PD gains?



A mini introduction to PID Control

 PID = Proportional-Integral-Derivative

feedback control

 It corresponds to one of the most

commonly used controllers used in

industry.

 It's success is based on its capacity to

efficiently and robustly control a

variety of processes and dynamic

systems, while having an extremely

simple structure and intuitive tuning

procedures.

 Not comparable in performance with

modern control strategies, but still the

most common starting point

How to select the PD gains?



Controlling a Multirotor along the x-axis
 MATLAB Implementation
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 MATLAB Implementation



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis



Real-life Limitations

 The control margins of the aerial vehicle have limits and therefore the PID controller

has to be designed account for these constraints.

 The integral term needs special caution due to the often critically stable or unstable

characteristics expressed by unmanned aircraft.

 With the exception of hover/or trimmed-flight, an aerial vehicle is a nonlinear system.

As the PID is controller, it naturally cannot maintain an equally good behavior for the

full flight envelope of the system. A variety of techniques such as Gain scheduling are

employed to deal with this fact.
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Controlling a Multirotor along the x-axis

 Assume a single-axis multirotor.

 The system has to coordinate its

pitching motion and thrust to move to

the desired point ahead of its axis.

 Roll is considered to be zero, yaw is

considered to be constant. No initial

velocity. No motion is expressed in any

other axis.

 A system of only two degrees of

freedom.



Controlling a Multirotor along the x-axis

 Simplified linear dynamics

How does this system behave?



Optimal Model-Based Control

 Use model knowledge to design optimal control

behaviors.

 The employed model must be simultaneously

sufficiently accurate but also simple enough to enable

efficient control computation.

 Optimal control can support linear and nonlinear

systems as well as systems subject to state, output and

input constraints. Further extensions (e.g. for hybrid

systems) also exist.

 Established method for unconstrained linear systems

regulation:

 Linear Quadratic Regulator (LQR)

 Generalization: Linear Quadratic Gaussian (LQG) control



Linear Quadratic Regulator

 Consider the system

 and suppose we want to design state feedback control u=Fx to stabilize the system.

The design of F is a trade-off between the transit response and the control effort. The

optimal control approach to this design trade-off is to define the performance index

(cost functional):

 and search for the control u=Fx that minimizes this index. Q is an nxm symmetric

positive semidefinite matrix and R is an mxm symmetric positive definite matrix.



Linear Quadratic Regulator

 The matrix Q can be written as Q=MTM, where M is a pxn matrix, with p≤n. With this

representation:

 Where z=Mx can be viewed as a controlled input.

 Optimal Control Problem: Find u(t)=Fx(t) to maximize J subject to the model:

 Since J is defined by an integral over , the first question we need to address is:

Under what conditions will J exist and be finite?



Linear Quadratic Regulator

 Write J as:

 is a monotonically increasing function of tf. Hence, as either

converges to a finite limit or diverges to infinity.

 Under what conditions will be finite?



Linear Quadratic Regulator

 Recall that (A,B) is stabilizable if the uncontrollable eigenvalues of A, if any, have

negative real parts.

 Notice that (A,B) is stabilizable if (A,B) is controllable or

 Definition: (A,C) is detectable if the observable eigenvalues of A, if any, have

negative real parts.

 Lemma 1: Suppose (A,B) is stabilizable, (A,M) is detectable, where Q=MTM, and

u(t)=Fx(t). Then, J is finite for every if and only if:



Linear Quadratic Regulator

 Remarks:

 The need for (A,B) to be stabilizable is clear, for otherwise there would be no F such that:

 To see why detectability of (A,M) is needed, consider:

 (A,B) is controllable, but (A,M) is not detectable

 The control is clearly optimal and results in a finite J but it does not stabilize the system

because



Linear Quadratic Regulator

 Lemma 2: For any stabilizing control u(t)=Fx(t), the cost given by:

 where W is a symmetric positive semidefinite matrix that satisfies the Lyapunov

equation:

 Remark: The control u(t)=Fx(t) is stabilizing if:



Linear Quadratic Regulator

 Theorem: Consider the system: and the performance index:

 where Q=MTM, R is symmetric and positive definite, (A,B) is stabilizable, and (A,M) is

detectable. The optimal control is:

 where P is the symmetric positive semidefinite solution of the Algebraic Riccati

Equation (ARE):



Linear Quadratic Regulator

 Remarks:

 Since the control is stabilizing:

 The control is optimal among all square integratable signals u(t), not just among u(t)=Fx(t)

 The Ricatti equation can have multiple solutions, but only one of them is positive

semidefinite.



Linear Quadratic Regulator

 Typical penalty matrices selection:

 tsi is the desired settling time of xi

 ximax is a constraint on |xi|

 uimax is a constraint on |ui|

 ρ is chosen to tradeoff regulation versus control effort



Linear Quadratic Regulator

 LQR Loop (F=K)



MATLAB Design Example

 Recall:



MATLAB Design Example
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MATLAB Design Example

[K,S,e] = dlqr(A,B,Q,R,N)



MATLAB Design Example
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MATLAB Design Example



MATLAB Aircraft Pitch Example

For a step reference of 0.2 radians, the design criteria are the following.

1. Overshoot less than 10%

2. Rise time less than 2 seconds

3. Settling time less than 10 seconds

4. Steady-state error less than 2%
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MATLAB Aircraft Pitch Example



MATLAB Aircraft Pitch Example



MATLAB Aircraft Pitch Example



MATLAB Aircraft Pitch Example



Code Examples and Tasks

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/ma

tlab/control-systems/gain-scheduled-three-loop-aircraft-

autopilot

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/ma

tlab/control-systems/lqr

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/ma

tlab/control-systems/pid-cruise-control

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/ma

tlab/control-systems/pid

https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/control-systems/gain-scheduled-three-loop-aircraft-autopilot
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/control-systems/lqr
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/control-systems/pid-cruise-control
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/control-systems/pid


How does this apply to my project?

 To control the state of the robot and make it follow the desired trajectory.



Find out more

 http://www.kostasalexis.com/pid-control.html

 http://www.kostasalexis.com/lqr-control.html

 http://www.kostasalexis.com/linear-model-predictive-control.html

 http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum

&section=ControlStateSpace

 http://www.kostasalexis.com/literature-and-links.html



http://www.kostasalexis.com/pid-control.html
http://www.kostasalexis.com/lqr-control.html
http://www.kostasalexis.com/linear-model-predictive-control.html
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=ControlStateSpace
http://www.kostasalexis.com/literature-and-links.html


Thank you! 
Please ask your question!


