
CS491/691: Introduction to Aerial Robotics

Dr. Kostas Alexis (CSE) 

Topic: Motion Planning Recap



Fundamental motion planning problem

 Consider a dynamical control system defined by an ODE of the form:

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥𝑖𝑛𝑖𝑡 (1)

 Where is 𝑥 the state, 𝑢 is the control.

 Given an obstacle set 𝑋𝑜𝑏𝑠, and a goal set 𝑋𝑔𝑜𝑎𝑙, the objective of the motion

planning problem is to find, if it exists, a control signal 𝑢 such that the solution
of (1) satisfies 𝑥 𝑡 ∉ 𝑋𝑜𝑏𝑠 for all 𝑡 ∈ 𝑅+, and 𝑥 𝑡 ∈ 𝑋𝑔𝑜𝑎𝑙 for all 𝑡 > 𝑇, for some

finite 𝑇 ≥ 0. Return failure if no such control signal exists.

 Basic problem in robotics

 Provably hard: a basic version of it (the Generalized Piano Mover’s problem)

is known to be PSPACE-hard.



Motion planning in practice

 Many methods have been proposed to solve such problems in practical

applications:

 Algebraic planners: Explicit representation of obstacles. Use complicated algebra

(visibility computations/projections) to find the path. Complete, but impractical.

 Discretization + graph search: Analytic/grid-based methods do not scale well to

high dimensions. Graph search methods (A*, D*, etc.) can be sensitive to graph

size. Resolution complete.

 Potential fields/navigation functions: Virtual attractive forces towards the goal,
repulsive forces away from the obstacles. No completeness guarantees; unless

“navigation functions” are available – very hard to compute in general.

 These algorithms achieve tractability by foregoing completeness altogether,

or achieving weaker forms of it, e.g. resolution completeness.



Sampling-based algorithms

 A recently proposed class of motion planning algorithms that has been very

successful in practice is based on (batch or incremental) sampling methods:

 Solutions are computed based on samples drawn from some distribution.

Sampling algorithms retain some form of completeness, e.g., probabilistic or

resolution completeness.

 Incremental sampling methods are particularly attractive:

 Incremental sampling algorithms lend themselves easily to real-time, on-line

implementation.

 Applicable to very generic dynamical systems.

 Do not require the explicit enumeration of constraints.

 Adaptively multi-resolution methods (i.e. make your own grid as you go along, up

to the necessary resolution).



Probabilistic RoadMaps (PRM)

 Introduced by Kavraki and Latombe in 1994.

 Mainly geared towards “multi-query” motion planning problems.

 Idea: build (offline) a graph (i.e., the roadmap) representing the
“connectivity” of the environment – use this roadmap to find paths quickly at

run-time.

 Learning/pre-processing phase:

 Sample 𝑛 points from 𝑋𝑓𝑟𝑒𝑒 = [0,1]𝑑\𝑋𝑜𝑏𝑠.

 Try to connect these points using a fast “local planner” (e.g. ignore obstacles).

 If connection successful (i.e. no collisions), add an edge between the points.

 At run-time:

 Connect the start and end goal to the closest nodes in the roadmap.

 Find a path on the roadmap.

 First planner ever to demonstrate the ability to solve generic planning

problems in > 4-5 dimensions!



Probabilistic RoadMap example

 “Practical” algorithm:

 Incremental construction.

 Connects points within a radius r, starting from “closest” ones.

 Do not attempt to connect points that are already on the same connected

component of the RPM.

 What kind of properties does this algorithm have? Will it find a solution if there

is one? Will that be an optimal solution? What is the complexity of the

algorithm?



Probabilistic Completeness

 Definition – Probabilistic Completeness:

 An algorithm ALG is probabilistically complete if, for any robustly feasible

motion planning problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , then:

lim
𝑁→∞

Pr 𝐴𝐿𝐺 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃 = 1

 A “relaxed” notion of completeness

 Applicable to motion planning problems with a robust solution. A robust

solutions remains a valid solution even when the obstacles are “dilated” by

small small 𝛿.

robust NOT robust



Asymptotic Optimality

NOT robust robust

 Definition – Asymptotic Optimality:

 An algorithm ALG is asymptotically optimal if, for any motion planning

problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 and function 𝑐 that admit a robust

optimal solution with finite cost 𝑐∗,

𝑃 lim
𝑖→∞

𝑌𝑖
𝐴𝐿𝐺 = 𝑐∗ = 1

 The function 𝑐 associates to each path 𝜎 a non-negative 𝑐(𝜎), e.g. 𝑐 𝜎 =

𝜎 Χ 𝑠 𝑑𝑠

 The definition is applicable to optimal motion planning problem with a robust

optimal solution. A robust optimal solution is such that it can be obtained as

a limit of robust (non-optimal) solutions.



Simple PRM (sPRM)

 The simplified version of the PRM algorithm has been shown to be

probabilistically complete.

 Moreover, the probability of success goes to 1 exponentially fast, if the

environment satisfies “good visibility” conditions.

 New key concept: combinatorial complexity vs “visibility”.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ∪ 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒𝑖 𝑖=1,,…,𝑁−1; 𝐸 ← 0;

foreach 𝑣 ∈ 𝑉 do:

𝑈 ← 𝑁𝑒𝑎𝑟(𝐺 = 𝑉, 𝐸 , 𝑣, 𝑟)\ 𝑣 ;

foreach 𝑢 ∈ 𝑈 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑣, 𝑢) then 𝐸 ← 𝐸 ∪ 𝑣, 𝑢 , (𝑢, 𝑣)}
return 𝐺 = 𝑉, 𝐸 ;

sPRM Algorithm



Remarks on PRM

 sPRM is probabilistically complete and asymptotically optimal.

 PRM is probabilistically complete but NOT asymptotically optimal.

 Complexity for N samples: 𝑂(𝑁2).



Rapidly-exploring Random Trees

 Introduced by LaValle and Kuffner in 1998.

 Appropriate for single-query planning problems.

 Idea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

 At each step: sample one point from 𝑋𝑓𝑟𝑒𝑒, and try to connect it to the

closest vertex in the tree.

 Very effective in practice, “Voronoi bias”.



Rapidly-exploring Random Trees

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRT



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



Some remarks on that negative result

 Intuition: RRT does not satisfy a necessary condition for asymptotic optimality,

i.e., that the root node has infinitely many subtrees that extend at least a

distance 𝜖 away from 𝑥𝑖𝑛𝑖𝑡.

 The RRT algorithm “traps” itself by disallowing new better paths to emerge.

 Heuristics such as

 Running the RRT multiple times

 Running multiple times concurrently

 Deleting and rebuilding parts of the tree etc.

Work better than the standard RRT, but cannot remove the sub-optimal behavior.

 How can we do better?



Rapidly-exploring Random Graphs (RRGs)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤, min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) then 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRG Algorithm

 At each iteration, the RRG tries to connect to the new sample all vertices in

a ball radius 𝑟𝑛 centered at it. (Or simply default to the nearest one if such a

ball is empty).

 In general, the RRG builds graphs with cycles.



Properties of RRGs

Since 𝑉𝑛
𝑅𝑅𝐺 = 𝑉𝑛

𝑅𝑅𝑇, for all 𝑛, it follows that RRG has the same completeness properties of

RRT, i.e.

Pr 𝑉𝑛
𝑅𝑅𝐺 ∩ 𝑋𝑔𝑜𝑎𝑙 = 0 = 𝑂(𝑒−𝑏𝑛)

Theorem – Probabilistic completeness

If the 𝑁𝑒𝑎𝑟 procedure returns all nodes in 𝑉 within a ball of volume

𝑉𝑜𝑙 = 𝛾
log 𝑛

𝑛
, 𝛾 > 2𝑑(1 + Τ1 𝑑),

Under some additional technical assumptions (e.g., on the sampling distribution, on the 𝜖
clearance of the optimal path, and on the continuity of the cost function), the best path

in the RRG converges to an optimal solution almost surely, i.e.:

Pr 𝑌∞
𝑅𝑅𝐺 = 𝑐∗ = 1

Theorem – Asymptotic optimality



Computational complexity

 At each iteration, the RRG algorithm executes 𝑂 log𝑛 extra calls to

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒 when compared to the RRT.

 However, the complexity of the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 procedure is Ω(logn). Achieved if

using, e.g., a Balanced-Box Decomposition (BBD) Tree.

 In other words, the RRG algorithm has no substantial computational

overhead over RRT, and ensures asymptotic optimality.

There exists a constant 𝛽 ∈ ℝ+ such that

lim
𝑖→∞

𝑠𝑢𝑝 𝐸
𝑂𝑃𝑆𝑖

𝑅𝑅𝐺

𝑂𝑃𝑆𝑖
𝑅𝑅𝑇 ≤ 𝛽

Theorem – Asymptotic (Relative) Complexity



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm



Rapidly-exploring Random Tree-star (RRT*)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤 , min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ;
𝑥𝑚𝑖𝑛 ← 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡; 𝑐min ← 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 + 𝑐(𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤 )
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ^ 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝑐 𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 < 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟 then:

𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑟𝑒𝑛𝑡 𝑥𝑛𝑒𝑎𝑟 ;

𝐸 ← 𝐸\ 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑥𝑛𝑒𝑎𝑟 ∪ (𝑥𝑛𝑒𝑤, 𝑥𝑛𝑒𝑎𝑟) ;

return 𝐺 = 𝑉, 𝐸 ;

RRT* Algorithm



Summary

 Key idea in RRG/RRT*: to combine optimality and computational efficiency,

it is necessary to attempt connection to Θ(logN) nodes at each iteration.

 Reduce volume of the “connection ball” as log(𝑁)/𝑁;

 Increase the number of connections as log𝑁

 These principles can be used to obtain “optimal” versions of PRM etc.

Algorithm Probabilistic Completeness Asymptotic Optimality Computational Complexity

sPRM YES YES 𝑂(𝑁)

k-nearest PRM NO NO 𝑂(𝑙𝑜𝑔𝑁)

RRT YES NO 𝑂(𝑙𝑜𝑔𝑁)

PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRT* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)



The inspection path planning problem

 Consider a dynamical control system defined by an ODE of the form:

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥𝑖𝑛𝑖𝑡

 Where is 𝑥 the state, 𝑢 is the control. As well as a sensor model of field of view

𝐹𝑂𝑉 = 𝐹𝐻, 𝐹𝑉 and maximum range 𝑑.

 Given an obstacle set 𝑋𝑜𝑏𝑠, and a inspection manifold 𝑆𝐼, the objective of

the motion planning problem is to find, if it exists, a path 𝒓 that provides the

viewpoints to the sensor such that the whole surface of 𝑆𝐼 is perceived, the

vehicle dynamics are respected and the cost of the path (distance, time,

etc) is minimized.



Rapidly-exploring Random Tree-Of-Trees (RRTOT)

 Problem: given a representation of

the structure find the optimal

coverage path.

 Challenges: can we find the

optimal path? Can we converge

asymptotically to that solution?

 Goal: Provide an algorithm that can
incrementally derive the optimal

solution and be able to provide

admissible paths “anytime”.



RRTOT: Functional Principle

Overcome the 

limitations of 

motion planners 

designed for 

navigation 

problems.

Vary the solution 

topology – be 

able to find the 

optimal solution. X`

Overcome the 

limitations of SIP 

but in a 

computationally 

very expensive 

way.



RRTOT: Functional Principle

 Comparison with the state-of-the-art: RRTOT seems to be able to provide

solutions faster.

 Comparison against: G Papadopoulos, H Kurniawati, N Patrikalakis, “Asymptotically optimal path planning and 
surface reconstruction for inspection”, IEEE International Conference on Robotics and Automation (ICRA) 2013.



RRTOT: Indicative Solutions

 Holonomic

 Nonholonomic



RRTOT: Indicative Solutions

Kostas Alexis, Robotics Short Seminars, Feb 11 2016

 Holonomic

 Nonholonomic



The Exploration path planning problem

The exploration path planning problem consists in exploring a bounded 3D
space 𝑉 ⊂ ℝ3. This is to determine which parts of the initially unmapped space
𝑉𝑢𝑛𝑚 = 𝑉 are free 𝑉𝑓𝑟𝑒𝑒 ⊂ 𝑉 or occupied 𝑉𝑜𝑐𝑐 ⊂ 𝑉. The operation is subject to
vehicle kinematic and dynamic constraints, localization uncertainty and
limitations of the employed sensor system with which the space is explored.

 As for most sensors the perception stops at surfaces, hollow spaces or narrow
pockets can sometimes not be explored with a given setup. This residual
space is denoted as 𝑉𝑟𝑒𝑠. The problem is considered to be fully solved when
𝑉𝑓𝑟𝑒𝑒 ∪ 𝑉𝑜𝑐𝑐 = 𝑉\𝑉𝑟𝑒𝑠.

 Due to the nature of the problem, a suitable path has to be computed
online and in real-time, as free space to navigate is not known prior to its
exploration.

Problem Definition



RH-NBVP Functional Principle

Kostas Alexis, Robotics Short Seminars, Feb 11 2016



RH-NBVP Approach

 Environment representation: Occupancy

Map dividing space 𝑉 into 𝑚 ∈ 𝑀 cubical

volumes (voxels) that can be marked

either as free, occupied or unmapped.

 Array of voxels is saved in an octree

structure to enable computationally

efficient access and search.

 Paths are planned only within the free
space 𝑉𝑓𝑟𝑒𝑒 and collision-free point-to-

point navigation is inherently supported.

 At each viewpoint/configuration of the

environment 𝜉 , the amount of space

that is visible is computed as 𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝑀, 𝜉)

The Receding Horizon Next-Best-View

Exploration Planner relies on the real-time

update of the 3D map of the environment.



RH-NBVP Approach

 Tree-based exploration: At every

iteration, RH-NBVP spans a random tree

of finite depth. Each vertex of the tree is

annotated regarding the collected

Information Gain – a metric of how much

new space is going to be explored.

 Within the sampled tree, evaluation

regarding the path that overall leads to

the highest information gain is

conducted. This corresponds to the best

path for the given iteration. It is a
sequence of next-best-views as sampled

based on the vertices of the spanned

random tree.



RH-NBVP Approach

 Receding Horizon: For the extracted best

path of viewpoints, only the first

viewpoint is actually executed.

 The system moves to the first viewpoint of

the path of best viewpoints.

 Subsequently, the whole process is

repeated within the next iteration. This

gives rise to a receding horizon

operation.



NBVP Iterative Step

RH-NBVP Algorithm

 𝜉0 ←current vehicle configuration

 Initialize 𝑻 with 𝜉0 and, unless first planner call, also previous best branch

 𝑔𝑏𝑒𝑠𝑡 ← 0 // Set best gain to zero

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛0 𝜉0 // Set best node to root

 𝑁𝑇 ←Number of nodes in 𝑻

 while 𝑁𝑇 < 𝑁𝑚𝑎𝑥 or 𝑔𝑏𝑒𝑠𝑡 == 0 do

 Incrementally build T by adding 𝑛𝑛𝑒𝑤 𝜉𝑛𝑒𝑤

 𝑁𝑇 ← 𝑁𝑇 + 1

 if 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤 > 𝑔𝑏𝑒𝑠𝑡 then

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛𝑛𝑒𝑤

 𝑔𝑏𝑒𝑠𝑡 ← 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤

 if 𝑁𝑇 > 𝑁𝑇𝑂𝑇 then

 Terminate exploration

 σ ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝑩𝒆𝒔𝒕𝑷𝒂𝒕𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕 𝑛𝑏𝑒𝑠𝑡

 Delete 𝑻

 return σ



RH-NBVP Remarks

 Inherently Collision-free: As all paths of

NBVP are selected along branches

within RRT-based spanned trees, all paths

are inherently collision-free.

 Computational Cost: NBVP has a thin

structure and most of the computational

cost is related with collision-checking

functionalities. The formula that expresses

the complexity of the algorithm takes the

form:



Find out more

 http://www.kostasalexis.com/autonomous-navigation-and-exploration.html

 http://www.kostasalexis.com/holonomic-vehicle-bvs.html

 http://www.kostasalexis.com/dubins-airplane.html

 http://www.kostasalexis.com/collision-free-navigation.html

 http://www.kostasalexis.com/structural-inspection-path-planning.html

 http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-

of-autonomy-and-decision-making-fall-2010/lecture-notes/

 http://ompl.kavrakilab.org/

 http://moveit.ros.org/

 http://planning.cs.uiuc.edu/

http://www.kostasalexis.com/holonomic-vehicle-bvs.html
http://www.kostasalexis.com/holonomic-vehicle-bvs.html
http://www.kostasalexis.com/dubins-airplane.html
http://www.kostasalexis.com/collision-free-navigation.html
http://www.kostasalexis.com/structural-inspection-path-planning.html
http://ompl.kavrakilab.org/
http://ompl.kavrakilab.org/
http://moveit.ros.org/
http://planning.cs.uiuc.edu/


References

 A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Structural
Inspection Path Planning via Iterative Viewpoint Resampling with Application to Aerial Robotics",
IEEE International Conference on Robotics & Automation, May 26-30, 2015 (ICRA 2015), Seattle,
Washington, USA

 Kostas Alexis, Christos Papachristos, Roland Siegwart, Anthony Tzes, "Uniform Coverage Structural
Inspection Path-Planning for Micro Aerial Vehicles", Multiconference on Systems and Control
(MSC), 2015, Novotel Sydney Manly Pacific, Sydney Australia. 21-23 September, 2015

 K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, "Aerial robotic contact-based inspection:
planning and control", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9485-5, ISSN:
0929-5593, http://dx.doi.org/10.1007/s10514-015-9485-5

 A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri and R. Siegwart "An Incremental Sampling–
based approach to Inspection Planning: the Rapidly–exploring Random Tree Of Trees", accepted
at the Robotica Journal (awaiting publication)

 A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Three-
dimensional Coverage Path Planning via Viewpoint Resampling and Tour Optimization for Aerial
Robots", Autonomous Robots, Springer US, DOI: 10.1007/s10514-015-9517-1, ISSN: 1573-7527

 A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View"
Planner for 3D Exploration", IEEE International Conference on Robotics and Automation 2016
(ICRA 2016), Stockholm, Sweden (Accepted - to be presented)



Thank you! 
Please ask your question!


