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Contents

 We will recapitulate selected topics in:

 Coordinate Systems Transformations (CST)

 MAV Dynamics (MAVD)

 State Estimation (SE)

 Flight Control Systems (FCS)

 Motion Planning (MP)

 With an emphasis on FCS and MP
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CST: Inertial Frame to Body Frame

 Let:

 Then:



CST: Rotation of Reference Frame

 Rotation around the i-axis

 Rotation around the j-axis

 Rotation around the k-axis  Orthonormal matrix properties









CST: Application to Robot Kinematics

 [p,q,r] : body angular rates

 [u,v,w] : body linear velocities



CST: Relate Translational Velocity-Position

 Let [u,v,w] represent the body linear velocities

 Which gives:



CST: Body Rates – Euler Rates

 Let [p,q,r] denote the body angular rates

 Inverting this expression:



CST: Indicative questions

 What is the rotation matrix for a roll motion of π/6 and a pitch motion of π/4?

 Correlate the body rates and the Euler angles derivatives for a roll motion of π/6 and

a pitch motion of π/4

 Where do the Euler angles present singularity?

 Explain the chain of operations required to conduct a roll, pitch and yaw rotation
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MAVD: MAV Dynamics

What is the relation between the 

propeller aerodynamic forces 

and moments, the gravity force 

and the motion of the aerial 

robot?



MAVD: MAV Dynamics

 Assumption 1: the Micro Aerial Vehicle is flying as a

rigid body with negligible aerodynamic effects on it –

for the employed airspeeds.

 The propeller is considered as a simple propeller disc

that generates thrust and a moment around its shaft.

 Recall:

 And let us write:



MAVD: MAV Dynamics
 To append the forces and moments we need to

combine their formulation with

 Next step: append the MAV forces

and moments



MAVD: MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



MAVD: Control Allocation

 MAV forces in the body frame:

 Moments in the body frame:



MAVD: Control Allocation

 MAV forces in the body frame:

 Moments in the body frame:



MAVD: Indicative questions

 What is the control allocation matrix for an octarotor with arm length equal to 0.3m?

Describe how the control methodology of this control allocation actuates the roll,

pitch and yaw rotations as well as how the aerial robot moves in the x,y,z axis.

 What is the thrust force necessary to compensate for the weight given any possibly

orientation of the MAV that can be continuously defined using Euler angles?

 Describe the series of motions such that the system manages to translate along the x-

axis.

 If the system is rotated around the yaw axis, how can the system achieve translation

along a single inertial axis?
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SE: The State Estimation problem

 We want to estimate the world state x from:

 Sensor measurements z and

 Controls u

 We need to model the relationship between these random variables, i.e:



SE: Causal vs. Diagnostic Reasoning

Is diagnostic

Is causal

 Diagnostic reasoning is typically what we need.

 Often causal knowledge is easier to obtain.

 Bayes rule allows us to use causal knowledge in diagnostic reasoning.



SE: Bayes rule

 Definition of conditional probability:

 Bayes rule:

Observation likelihood Prior on world state

Prior on sensor observations



Markov Assumption

 Observations depend only on current state

 Current state depends only on previous state and current action



Markov Chain

 A Markov Chain is a stochastic process where, given the present state, the

past and the future states are independent.



Underlying Assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors



Bayes Filter

 Given

 Sequence of observations and actions:

 Sensor model:

 Action model:

 Prior probability of the system state:

 Desired

 Estimate of the state of the dynamic system:

 Posterior of the state is also called belief:



Bayes Filter Algorithm

 For each time step, do:

 Apply motion model:

 Apply sensor model:

 η is a normalization factor to ensure that the probability is maximum 1.



Notes

 Bayes filters also work on continuous state spaces (replace sum by integral).

 Bayes filter also works when actions and observations are asynchronous.



Example: Localization

 Discrete state:

 Belief distribution can be represented as a grid

 This is also called a historigram filter



Example: Localization

 Action:

 Robot can move one cell in each time step

 Actions are not perfectly executed



Example: Localization

 Action

 Robot can move one cell in each time step

 Actions are not perfectly executed

 Example: move east

 60% success rate, 10% to stay/move too far/ move one up/ move one down



Example: Localization

 Binary observation:

 One (special) location has a marker

 Marker is sometimes also detected in neighboring cells



Example: Localization

 Let’s start a simulation run…



Example: Localization

 t=0

 Prior distribution (initial belief)

 Assume that we know the initial location (if not, we could initialize with a

uniform prior)



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=1, u =east, z=no-marker

 Bayes filter step 2: Apply observation model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 1: Apply motion model



Example: Localization

 t=2, u =east, z=marker

 Bayes filter step 2: Apply observation model

 Question: where is the robot?



SE: Indicative questions

 Explain the Bayes rule.

 Solve a localization problem of a robot operating in a grid-space, able to move E-W,

N-S and getting a measurement that is true or false depending on the possible

detection of a marker.

 What are the underlying assumptions of Markov processes used for localization?

 Would we be able to localize the robot using the Bayes filter if the marker was moving

and we had no knowledge of its motion pattern and values over time?
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Controlling a Multirotor along the x-axis

 Assume a single-axis multirotor.

 The system has to coordinate its

pitching motion and thrust to move to

the desired point ahead of its axis.

 Roll is considered to be zero, yaw is

considered to be constant. No initial

velocity. No motion is expressed in any

other axis.

 A system of only two degrees of

freedom.



Controlling a Multirotor along the x-axis

 Simplified linear dynamics

How does this system behave?



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis

 Decoupled Control Structure



Controlling a Multirotor along the x-axis

 Decoupled Control Structure

How to select the PD gains?



A mini introduction to PID Control

 PID Control stands for Proportional-

Integral-Derivative feedback control

and corresponds to one of the most

commonly used controllers used in

industry.

 It's success is based on its capacity to

efficiently and robustly control a

variety of processes and dynamic

systems, while having an extremely

simple structure and intuitive tuning

procedures.

 Not comparable in performance with

modern control strategies, but still the

most common starting point

How to select the PD gains?



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis



Controlling a Multirotor along the x-axis
 MATLAB Implementation



Controlling a Multirotor along the x-axis



FCS: Indicative questions

 Which of the following controllers can ensure stability of the open loop, linearized,

decoupled pitch dynamics of a quadrotor aerial robot? a)Proportional control, b)

Proportional-Derivative control, c) Proportional-Integral-Derivative

 Can a proportional gain-only controller that relies on the absolute position error,

stabilize the open-loop, linearized, decoupled x-axis dynamics a quadrotor aerial

robot?

 Can a proportional gain-only controller that relies on the absolute position error,

stabilize the open-loop, linearized, decoupled pitch-rate dynamics a quadrotor aerial

robot?

 Describe the role of each of the proportional, integral, derivative gains
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Fundamental motion planning problem

 Consider a dynamical control system defined by an ODE of the form:

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥𝑖𝑛𝑖𝑡 (1)

 Where is 𝑥 the state, 𝑢 is the control.

 Given an obstacle set 𝑋𝑜𝑏𝑠, and a goal set 𝑋𝑔𝑜𝑎𝑙, the objective of the motion

planning problem is to find, if it exists, a control signal 𝑢 such that the solution
of (1) satisfies 𝑥 𝑡 ∉ 𝑋𝑜𝑏𝑠 for all 𝑡 ∈ 𝑅+, and 𝑥 𝑡 ∈ 𝑋𝑔𝑜𝑎𝑙 for all 𝑡 > 𝑇, for some

finite 𝑇 ≥ 0. Return failure if no such control signal exists.

 Basic problem in robotics

 Provably hard: a basic version of it (the Generalized Piano Mover’s problem)

is known to be PSPACE-hard.



Sampling-based algorithms

 A recently proposed class of motion planning algorithms that has been very

successful in practice is based on (batch or incremental) sampling methods:

 Solutions are computed based on samples drawn from some distribution.

Sampling algorithms retain some form of completeness, e.g., probabilistic or

resolution completeness.

 Incremental sampling methods are particularly attractive:

 Incremental sampling algorithms lend themselves easily to real-time, on-line

implementation.

 Applicable to very generic dynamical systems.

 Do not require the explicit enumeration of constraints.

 Adaptively multi-resolution methods (i.e. make your own grid as you go along, up

to the necessary resolution).



Rapidly-exploring Random Trees

 Introduced by LaValle and Kuffner in 1998.

 Appropriate for single-query planning problems.

 Idea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

 At each step: sample one point from 𝑋𝑓𝑟𝑒𝑒, and try to connect it to the

closest vertex in the tree.

 Very effective in practice, “Voronoi bias”.



Rapidly-exploring Random Trees

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRT



Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)



Rapidly-exploring Random Trees (RRTs)



RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm
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RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.
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propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.
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Rapidly-exploring Random Tree-star (RRT*)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤 , min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ;
𝑥𝑚𝑖𝑛 ← 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡; 𝑐min ← 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 + 𝑐(𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤 )
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ^ 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝑐 𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 < 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟 then:

𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑟𝑒𝑛𝑡 𝑥𝑛𝑒𝑎𝑟 ;

𝐸 ← 𝐸\ 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑥𝑛𝑒𝑎𝑟 ∪ (𝑥𝑛𝑒𝑤, 𝑥𝑛𝑒𝑎𝑟) ;

return 𝐺 = 𝑉, 𝐸 ;

RRT* Algorithm



Summary

 Key idea in RRG/RRT*: to combine optimality and computational efficiency,

it is necessary to attempt connection to Θ(logN) nodes at each iteration.

 Reduce volume of the “connection ball” as log(𝑁)/𝑁;

 Increase the number of connections as log𝑁

 These principles can be used to obtain “optimal” versions of PRM etc.

Algorithm Probabilistic Completeness Asymptotic Optimality Computational Complexity

sPRM YES YES 𝑂(𝑁)

k-nearest PRM NO NO 𝑂(𝑙𝑜𝑔𝑁)

RRT YES NO 𝑂(𝑙𝑜𝑔𝑁)

PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest PRM* YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)

RRT* YES YES 𝑂(𝑙𝑜𝑔𝑁)

k-nearest RRG YES YES 𝑂(𝑙𝑜𝑔𝑁)



MP: Indicative questions

 What is the difference between RRT and RRT* ?

 Considering a robot that starts from initial configuration 𝑥0 and wants to arrive to a

final configuration 𝑥𝑓 , while navigating in the obstacle-free world, provide a

visualization of the steps conducted by RRT to achieve this motion planning problem.

 Considering a robot that starts from initial configuration 𝑥0 and wants to arrive to a

final configuration 𝑥𝑓 , while navigating in the obstacle-free world, provide a

visualization of the steps conducted by RRT* to achieve this motion planning problem.

 Explain the rewiring process of RRT*



Thank you! 
Please ask your question!


