CS491/691: Infroduction 1o Aerial Robotics

Topic: Recapitulate

Dr. Kostas Alexis (CSE)

Contents

= We will recapitulate selected topics in:
» Coordinate Systems Transformations (CST)
= MAYV Dynamics (MAVD)
= State Estimation (SE)
= Flight Control Systems (FCS)
= Motion Planning (MP)

= With an emphasis on FCS and MP

CS491/691: Infroduction 1o Aerial Robotics

Topic: Coordinate Systems Transformations

Dr. Kostas Alexis (CSE)

\

» |

CST: Inertial Frame to Body Frame

eft:

cosf 0

0

1

1 0 0

0 cos¢g sing

0 —sing cos¢
CoCy)

S$SeCyh — ChpSyp SpSeSy T ChpCyp SpCo
C¢S@C¢-+-S¢S¢ CySeSy — S¢Cy CyCh

» Then:

p’ = R,p"

sint) 0
CoSq

RE(,0,1) = Ruy ()R (OYRL (1)

—sinf

0

cos 0

siny 0

cosy 0

0

1

CST: Rotation of Reference Frame

» Rotation around the i-axis

1 0 0
0 cosf sinf

0 —sinf cos@

Ry =

Rotation around the j-axis

cos@ 0 —sinf |
Re=10 1 0 :
— 1
sinff 0 cosé ko_k1 Px 0
= Rotfation around the k-axis = Orthonormal matrix properties
- by\—1 b\T __ Pa
cos@ sinf 0 (R;a) g — Uf’a) =R,
Ry = |—sinf cosf 0 = RyRa’ =R,
0 0 1 = det(R2) =1

CST: Application to Robot Kinematics

= [p,q,r] : body angular rates

= [u,v,w] : body linear velocities

CST: Relate Translational Velocity-Position

= |ef [uv,w] represent the body linear velocities

d -pn- v -u- b\T -u-
7 Pe| =Ry |v]| =(Ry)" |v
Pd_ 0 RV
= Which gives:
iy -c@cw S$SeCy — CpSg CypSeCy 5¢5¢- U
Pe| = |CoSy S¢SeSy + CoCyp CpSeSy — Scyp v
Pd_ | —Sg S$Co o | |w

CST: Body Rates — Euler Rates

= |et [p,q,r] denote the body angular rates
2 b 0 0

gl = {0 0| =

H 0 tb]

) 1 0 1 0 cos) 0 —sinf| [0
O]+[O cos ¢ smgb] {9]—# 0 cosgb smqb] [0 1 0] [0] =
0 0 —smqb cosp| [0 0 —sing cos¢| [sinff 0 cosf 1)

1 —sin q5
0 cos qb sin ¢ cos @ ||
0 —sing cosdcost ||

= |nverting this expression:

+ R (¢) +RE (#)R2 ()

¢ 1 singtanf cos¢tand]| [p
0| =10 COS ¢ — sin ¢ q
K4 0 singsecl cospsect| |r

CST: Indicative guestions

= What is the rotation matrix for a roll motion of 1m/6 and a pitch motion of 11/4¢

» Correlate the body rates and the Euler angles derivatives for a roll motion of /6 and
a pitch motion of /4

» Where do the Euler angles present singularity?

Explain the chain of operations required to conduct a roll, pitch and yaw rotation

CS491/691: Infroduction 1o Aerial Robotics
Topic: MAV Dynamics

Dr. Kostas Alexis (CSE)

MAVD: MAV Dynamics T,

What is the relation between the
propeller aerodynamic forces
and moments, the gravity force
and the motion of the aerial
robot?

MAVD: MAV Dynamics

Assumption 1: the Micro Aerial Vehicle is flying as @
rgid body with negligible aerodynamic effects on it —
for the employed airspeeds.

The propeller is considered as a simple propeller disc
that generates thrust and a moment around its shaft.

Recall:

FT =1 = OT)OA(QR)Z
Mo = Q = CopA(QR)*R

And let us write:

MAVD: MAV Dynamics I

» To append the forces and moments we need to 1 -Q,
combine their formulation with 4 *C

—_—-
—_——

pn, u C@C¢ SpSeCy — CpSyy CypSeCy + S¢S¢ i,QI
Pe| =Ry |V |, Ry = [CoSyp 54505p + CoCyp CyS0Sy — SpCyp
f)d_ | W | | — 56 S4Co CyCo |
ol [rv-aw| g [
v = |pw—ru| +—|f,
m
w| [qu—pv_ A
qb 1 singtanf cos¢gtanf]| [p]
ol = 10 cos ¢ —siné q = Next step: append the MAV forces
Qp 0 singsectl cosgsect| |7 ahaimomEnt
(D] J’” qfr i 1 =M,]
j| = Jz p?" + f - M,
Jx g
| =g LM

MAVD: MAV Dynamics

= MAV forces in the body frame: q

V*C
-fx- - 0 - - 0 -
fo= | £ | = 0 ~R2| 0
£l LT mg.
= Moments in the body frame:

-Mx- | lCﬁO [ZCGO —ZCGQ —{ —ngo- ;2
My, = My = —ZSG() 0 1860 ZSGO 0 —ZSGO T3
M, b, ke —km km —km Fm :
LAGES L 4T
1g

30°

MAVD: Control Allocation

= MAV forces in the body frame: 60°
-fx_ - 0 - - 0 -
f, = fy — 0 _ RZ 0 |
6
Sz Do I it
= Moments in the body frame -
-Mx- I lCﬁO [ZCGO —ZCGQ — —ngo- 52
My, = My = —ZSG() 0 1860 ZSGO 0 —ZSGO T3
M, ke Kk —km km —km km :
| AGE i 1T
L6_

30°

MAVD: Control Allocation

= MAV forces in the body frame: 60°
-fx_ - 0 - - 0 -
f, = fy — 0 _ RZ 0 |
6
Sz Do I it
= Moments in the body frame -
-Mx- I lCﬁO [ZCGO —ZCGQ — —ngo- 52
My, = My = —ZSG() 0 1860 ZSGO 0 —ZSGO T3
M, ke Kk —km km —km km :
| AGE i 1T
L6_

MAVD: Indicative questions

= What is the conftrol allocation matrix for an octarotor with arm length equal to 0.3m<
Describe how the control methodology of this control allocation actuates the raoll,
pitch and yaw rotations as well as how the aerial robot moves in the x,y,z axis.

What is the thrust force necessary to compensate for the weight given any possibly
orientation of the MAYV that can be continuously defined using Euler anglese

Describe the series of motions such that the system manages to franslate along the x-
XiS.

If the system is rotated around the yaw axis, how can the system achieve translation
along a single inertial axis?

CS491/691: Infroduction 1o Aerial Robotics

Topic: State Estimation

Dr. Kostas Alexis (CSE)

SE: The State Estimation problem

=» We want tfo estimate the world state x from:
= Sensor measurements z and

=» Controls u

e need to model the relationship between these random variables, i.e:

p(x|z) p(x’|x;)

SE: Causal vs. Diagnhostic Reasoning
P(X‘Z) Is diagnostic
P(z|X) scaua

lagnostic reasoning is typically what we need.

Often causal knowledge is easier to obtain.

= Bayes rule allows us to use causal knowledge in diagnostic reasoning.

SE: Bayes rule

= Definition of conditional probability:

P(z,z) = P(z|2)P(z) = P(z|z)P(x)

= Bayes rule:

Observation likelihood Prior on world state
. 7
P P
plals) — PERIPE)
P(z)

f

Prior on sensor observations

Markov Assumption

= Observations depend only on current state

P(Zt\fffo:t;zl:t—hulzt) — P(Zt\l't)

= Current state depends only on previous state and current action

P(fftt‘:fUO:t;Zl:taul:t) — P(ffvt‘:ft—laut)

Markov Chain

= A Markov Chain is a stochastic process where, given the present state, the
past and the future states are independent.

A %%K? y

Underlying Assumptions

= Static world

» Independent noise

= Perfect model, no approximation errors

Bayes Filter

= Given
= Sequence of observations and actions: th Ut

= Sensor model: P(Z ‘ .I’)

= Action model: ‘ZD([L’)r ‘ZC? U)

= Prior probability of the system state: P ($)

= Desired
= Estimate of the state of the dynamic system: 70

» Posterior of the state is also called belief:

Bel(xy) = P(x¢|uq, z1, ..., ug, 2¢)

Bayes Filter Algorithm

= For each time step, do:

= Apply motfion model:

Bel (2) ZP (24|21,) Bel(xy—q)

rt—1

Bel(z;) = nP(z|z.)Bel(z)

= yis a normalization factor to ensure that the probability is maximum 1.

Notes

= Bayes filters also work on continuous state spaces (replace sum by integral).

= Bayes filter also works when actions and observations are asynchronous.

Example: Localization
= Discrete state: p & {1?2’ ”U)} X {]_’2j jh}

= Belief distribution can be represented as a grid

= /This is also called a historigram filter

P(x)=1

P(x)=0

Example: Localization

= aciion: 1, € {north, east, south,west}

= Robot can move one cell in each time step

= Actions are not perfectly executed

+

Example: Localization

= Action
= Robot can move one cell in each time step
= Actions are not perfectly executed

Example: move east

Ti—1 = Ik u=-cast | @

» 60% success rate, 10% to stay/move too far/ move one up/ move one down

Example: Localization

= Binary observation: 2 €& {m(],’f‘kerj mafr‘kefr‘}

= One (special) location has a marker

= Marker is sometimes also detected in neighboring cells

/

4

Example: Localization

» | et's start a simulation run...

Example: Localization

» ‘|‘:O

= Prior distribution (initial belief)

= Assume that we know the initial location (if not, we could initialize with a
uniform prior)

s

IR

v

Example: Localization

» {=1, U =eaqst, z=no-marker

= Bayes filter step 1: Apply motion model

s

Example: Localization

» {=1, U =eaqst, z=no-marker

= Bayes filter step 2: Apply observation model

/

“

Example: Localization

» {=2 U =eaqst, z=zmarker

= Bayes filter step 1: Apply motion model

/

Example: Localization

®» {=2, U =east, z=marker
= Bayes filter step 2: Apply observation model

= Question: where is the robot?

/

v

B

SE: Indicative questions

= Explain the Bayes rule.

= Solve a localization problem of a robot operating in a grid-space, able to move E-W,
N-S and getting a measurement that is frue or false depending on the possible
detection of a marker.

= What are the underlying assumptions of Markov processes used for localization?

ould we be able to localize the robot using the Bayes filter if the marker was moving
and we had no knowledge of its motion pattern and values over time?¢

CS491/691: Introduction 1o Aerial Robotics
Topic: Flight Control Systems

Dr. Kostas Alexis (CSE)

\

Controlling a Multirotor along the x-axis

= Assume a single-axis multirotor.

= The system has to coordinate its
pitching motion and thrust to move to
the desired point ahead of its axis.

= Roll is considered to be zero, yaw is
considered to be constant. No initial
velocity. No motion is expressed in any
other axis.

= A system of only two degrees of
freedom.

Controlling a Multirotor along the x-axis

= Simplified linear dynamics

() 0 1] [6 0 |
gl ~ o of 4] " |1/, M,
@] [0 1 '.:c'+' '

i |0 0] [

How does this system behave?

Conftrolling a Multirotor along the x-axis

%% Simple Modeling and Control study
clear;

Jy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

A p=1[01; 00]; B.p = [0 1/0 vy}
cp eye(2); D p = zeros(2,1);
5s_pitch = ss(A p,B p,C_p,D_p);

% x Linear Model

A x=[01l; 0 0]; B.x = [0 -gl;
C x =eyel(2); DX = zeros(2,1);
ss_x = s55(A %X,B_X%,C %,D_X);}

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch):
subplot(1,2,2); step(ss x);

Controlling a Multirotor along the x-axis

Amplitude

To: Out(2)

3.5

2.5

0.5

%107

Step Response

20
Time (seconds)

25

30

35

40

Amplitude

-1000

-2000

-3000

out(1)

-4000

To:

-5000

-6000

-7000

-8000

-50

-100

To: Out(2)

-250

-300

-350

-400

Step Response

20
Time (seconds)

Controlling a Multirotor along the x-axis

= Decoupled Control Structure

Ko (x-x") + Ky (%)

° X-X
—?—» x-axis PD

Ad g° 9'9d
and set 6" =0 Ad 6-6°

X X

X-axis
Dynamics

S)

—»‘)—> Pitch PD > Dyigf:.,’ics

Controlling a Multirotor along the x-axis

= Decoupled Control Structure

Ko (x-x") + Ky (%)

< X-X
—?—» x-axis PD

Ad 8° 9'9d
and set 6" =0 A 0-6°

X X

X-axis
Dynamics

S)

—»()—> Pitch PD > Dyi:mcs

How to select the PD gains?

A mini infroduction 1o PID Conitrol

= PID Confrol stands for Proportional- _r f—~e | 2
Integral-Derivative feedback confirol %

and corresponds to one of the most

commonly used conftrollers used in n——
0 The PID Controller can
IN US'ITy. o N . consist of:
))) I - action {:'L .
t's success is based on its capacity to i PD, § "5
o . D - action
efficiently and robustly control

variety of processes and dynamic
systems, while having an extremely
simple structure and intuitive tuning
procedures.

Not comparable in performance with
modern control strategies, but still the
most common starting point

How to select the PD gains?

Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation

Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD'")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation

Controlling a Multirotor along the x-axis

4\ PID Tuner - Step Plot: Reference tracking

PID TUNER

Plant: Type: PD «| Domain: < —'—'—'—q »0.2 + —
ss_pitch_ti v Fﬂﬁ: Parallel v | [Time - Slower Response Time (seconds) Faster - : ﬁ ﬁ/
. . % Deai -
&, Inspect {@ Options Lzl Add Plat + Aggressive Transient Behavior Rabust Design Parameters Export
-
TUNING TOOLS RESULTS |

FLANT CONTROLLER DESIGN
Step Plot: Reference tracking

Data Browser

Step Plot: Reference tracking

Amplitude

0 | | | | | | | |
0.4 0.6 0.8 1 16 18
Time (seconds)

Controller Parameters: Kp = 0.0006359, Kd = 0.0001018

Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD')

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD_PITCH GAINS = [K P pitch 0; 0 K D pitch];

ss5_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation

Controlling a Multirotor along the x-axis

#\ PID Tuner - Step Plot: Reference tracking - X
PID TUNER VIEW
Plant: Type: PO ¥ Domain: < —— »04179 % é)
55 X if v Form: Parallel - Time - Slower Response Time (seconds) Faster o . L
4 Inspect {@ Options &£} Add Piot ¥ hggressive Transient Behavior Robust . ¥ Design Parameters E
-
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS |
E Step Plot: Reference tracking
5
&
E
]
a
Step Plot: Reference tracking
=]
1=
[}
el
2
e
E
<
0.5
) | |
0 0.5 1 1.5 2 25 3

Time (seconds)

Controller Parameters: Kp = -1.168, Kd = -0.4227

Controlling a Multiro

%% Simple Modeling and Control study
clear;

J vy = 1.2e-5;

g = 9.806; mass = 1.2;

% Pitch Linear Model

Ap=1[01; 001; Bp= [0; 1/J vy}
Cp=-eye(2); Dp = zeros(2,1);

55 pitch = ss(& p,B p,C p,D p);

% % Linear Model

A x = [01; 0 0]; B_.x = [0; -gl;
C x =eye(2); D x = zeros(Z2,1);
55 ¥ = ss(A x,B %,C %x,D X);

% Observe the Step responses of the system
subplot(1,2,1): step(ss_pitch);
subplot(1,2,2); step(ss x);

%% Design the PD Controller for Pitch

ss_pitch tf = tf(ss_pitch); ss_pitch tf = ss_pitch tf(1):
pidTuner(ss pitch tf,'PD")

%% Design the PD Controller for X translational dynamics

55 x tf = tf(ss_x); 55 x tf = 55 x ©f(1);
pidTuner(ss_x tf,'PD'")

%% Verification
close all:

K P pitch = 25.8e-5; K D pitch = 9.82e-5;
PD _PITCH GAINS = [K P pitch 0; 0 K D pitch];

s55_pitch cl = feedback(PD_PITCH GAINS*ss_pitch, [1 11);
KPx=-1.17; KD x = -0.823;
PD X GAINS = [K P x 0; 0 K D x];

55_x cl = feedback(PD_X_GAINS*ss_X,[1 1]):

subplot (1,2,1); step(ss_pitch cl);
subplot(1,2,2); gtep(ss_x cl);

tor along the x-axis

= MATLAB Implementation

Amplitude

To: Out(1)

rolling a Multirotor along the x-axis

Step Response

0.5

0.7

Amplitude

0.8
Time (seconds)

Step Response

0.7

o o °
E (6,] (s)]

To: Out(2)

ok
w

0.2

0.1

—

Time (seconds)

FCS: Indicative questions

Which of the following controllers can ensure stability of the open loop, linearized,
decoupled pitch dynamics of a quadrotor aerial robot? a)Proportional conitrol, b)
Proportional-Derivative control, c) Proportional-Integral-Derivative

Can a proportional gain-only controller that relies on the absolute position error,
stabilize the open-loop, linearized, decoupled x-axis dynamics a quadrotor aeridl
robote

an a proportional gain-only controller that relies on the absolute position error,
stabilize the open-loop, linearized, decoupled pitch-rate dynamics a quadrotor aerial
robote

Describe the role of each of the proportional, integral, derivative gains

CS491/691: Infroduction 1o Aerial Robotics

Topic: Motion Planning

Dr. Kostas Alexis (CSE)

Fundamental motion planning problem

= Consider a dynamical control system defined by an ODE of the form:
2 = Fx,w),2(0) = Xgnse (1)
= Where is x the state, u is the control.

= Given an obstacle set X,,s, and a goal set X;,,;, the objective of the motion

planning problem is to find, if it exists, a control signal u such that the solution
of (1) satisfies x(t) & X,ps for all t € R*, and x(t) € X;,4, for all t > T, for some

finite T = 0. Return failure if no such control signal exists.

= Basic problem in robotics

= Provably hard: a basic version of it (the Generalized Piano Mover's problem)
Is known to be PSPACE-hard.

Sampling-based algorithms

= A recently proposed class of motion planning algorithms that has been very
successful in practice is based on (batch or incremental) sampling methods:

= Solutions are computed based on samples drawn from some distribution.
Sampling algorithms retain some form of completeness, e.g., probabilistic or
resolution completeness.

= Incremental sampling methods are particularly atiractive:

= |[ncremental sampling algorithms lend themselves easily to real-time, on-line
implementation.

= Applicable to very generic dynamical systems.
= Do not require the explicit enumeration of constraints.

= Adaptively multi-resolution methods (i.e. make your own grid as you go along, up
to the necessary resolution).

Rapidly-exploring Random Trees

Intfroduced by LaValle and Kuffner in 1998.
Appropriate for single-query planning problems.

Idea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

At each step: sample one point from Xf..., and try to connect it fo the
closest vertex in the tree.

Very effective in practice, “Voronoi bias”.

Rapidly-exploring Random Trees

RRT
Ve« {xinith E < 0;
fori=1,..., N do:

Xrand < SampleFree;
Xnearest < Nearest(G = (V,E), Xyqna);

Xnew < S teer(xnearestr xrand);
if ObstacleFree(Xpeqrest» Xnew) then:

VeV U{xpewh E < EU{(Xnearest: Xnew)};
return ¢ = (V,E);

= The RRT algorithm is probabilistically complete

= The probability of success goes to 1 exponentially fast, if the environment
satisfies certain “*good visibility” condifions.

Rapidly-exploring Random Trees (RRTs)

X free

o

.

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

Rapidly-exploring Random Trees (RRTs)

X free

Rapidly-exploring Random Trees (RRTs)

9

X free

.

Rapidly-exploring Random Trees (RRTs)

X free

9

Rapidly-exploring Random Trees (RRTs)

X free

o

.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties @

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-

computed.
« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.

RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

« RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

« After rewiring the cost has to be
propagated along the leaves.

« |If steering errors occur, subtrees can be re-
computed.

« The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.

Rapidly-exploring Random Tree-star (RRT¥)

Ve {xpnieh E < 0;
fori=1,...,N do:
Xrand < SampleFree;
Xnearest < Nearest(G = (V,E), Xrqna);

Xnew < Steer(xnearest' xrand);

: 1 av)l/d
Xnear < Near (G = (V,E), Xpew, min{ygre (M)) 77}>)

cardV
Velu {xnew};

Xmin < Xnearest) Cmin < COSt(xnearest) + C(Line(xnearest:xnew))
foreach x,..r € X, eqr dO:

if CollisionFree(Xpears Xnew) /N Cost(Xpear) + c(Line(Xnear Xnew)) < Cost(xneqr) then:
Xparent < Parent(Xpeqr);

E < E\{(xparenttxnear)} U {(xnew» xnear)};

return ¢ = (V,E);

Summary

= Key idea in RRG/RRT*: to combine optimality and computational efficiency,
it is necessary to attempt connection to ©(logN) nodes at each iteration.

= Reduce volume of the “connection ball” as log(N)/N;
= |ncrease the number of connections as log N

-/hese principles can be used to obtain “optimal” versions of PRM etc.

m Probabilistic Completeness Asymptotic Optimality Computational Complexity
YES YES

sPRM O(N)
k-nearest PRM NO NO O(logN)
RRT YES NO O(logN)
PRM* YES YES O(logN)
k-nearest PRM* YES YES O(logN)
RRG YES YES O(logN)
k-nearest RRG YES YES O(logN)
RRT* YES YES O(logN)

k-nearest RRG YES YES O(logN)

MP: Indicative questions

» Whatis the difference between RRT and RRT* ¢

= Considering a roboft that starts from initial configuration x, and wants to arrive to a
final configuration x,, while navigafing in the obstacle-free world, provide a
visualization of the steps conducted by RRT to achieve this motion planning problem.

= Considering a robot that starts from initial configuration x, and wants fo arrive to @
final configuration x,, while navigating in the obstacle-free world, provide a
isualization of the steps conducted by RRT* to achieve this motion planning problem.

Explain the rewiring process of RRT*

I T_Thanﬁu!
(Rledse ask your question

