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 We will recapitulate selected topics

in:

 Kalman Filter

 Extended Kalman Filter

 Exploration Path Planning
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Kalman Filter

 Bayes filter is a useful tool for state estimation.

 Histogram filter with grid representation is not very efficient.

 How can we represent the state more efficiently?



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction



Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n

 Optimal for linear Gaussian systems

 But most robots are nonlinear! This is why in practice we use Extended Kalman

Filters and other approaches.



KF: Indicative Questions

 Describe the Kalman Filter for a linear process of the form ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

 Explain the statistical role of the Kalman Gain
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Topic: Extended Kalman Filter

These slides relied on the lectures from C. Stachniss, J. Sturm and the book “Probabilistic Robotics” from Thurn et al. 



Kalman Filter Assumptions

 Gaussian distributions and noise

 Linear motion and observation model

 What if this is not the case?



Linearity Assumption Revisited



Nonlinear Function



Nonlinear Dynamical Systems

 Real-life robots are mostly nonlinear systems.

 The motion equations are expressed as nonlinear differential (or difference) equations:

 Also leading to a nonlinear observation function:



Taylor Expansion

 Solution: approximate via linearization of both functions

 Motion Function:

 Observation Function:



Reminder: Jacobian Matrix

 It is a non-square matrix mxn in general

 Given a vector-valued function:

 The Jacobian matrix is defined as:



Reminder: Jacobian Matrix

 It is the orientation of the tangent plane to the vector-valued function at a given point

 Generalizes the gradient of a scaled-valued function.

Courtesy: K. Arras



Extended Kalman Filter

 For each time step, do:

 Apply Motion Model:

 Apply Sensor Model:

where



Linearity Assumption Revisited



Nonlinear Function



EKF Linearization (1)



EKF Linearization (2)



EKF Linearization (3)



Linearized Motion Model

 The linearized model leads to:

 describes the noise of the motion.



Linearized Observation Model

 The linearized model leads to:

 describes the noise of the motion.



EKF Algorithm

KF vs EKF



EKF Summary

 Extension of the Kalman Filter.

 One way to deal with nonlinearities.

 Performs local linearizations.

 Works well in practice for moderate nonlinearities.

 Large uncertainty leads to increased approximation error.



EKF: Indicative Questions

 Describe the Extended Kalman Filter for a linear process of the form ሶ𝑥 =
𝑓(𝑥, 𝑢)

 Explain the statistical role of the Kalman Gain for nonlinear systems
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The Exploration path planning problem

The exploration path planning problem consists in exploring a previously unknown
bounded 3D space 𝑉 ⊂ ℝ3. This is to determine which parts of the initially unmapped
space 𝑉𝑢𝑛𝑚 = 𝑉 are free 𝑉𝑓𝑟𝑒𝑒 ⊂ 𝑉 or occupied 𝑉𝑜𝑐𝑐 ⊂ 𝑉. The operation is subject to

vehicle kinematic and dynamic constraints, localization uncertainty and limitations
of the employed sensor system with which the space is explored.

 As for most sensors the perception stops at surfaces, hollow spaces or narrow
pockets can sometimes not be explored with a given setup. This residual space is
denoted as 𝑉𝑟𝑒𝑠. The problem is considered to be fully solved when 𝑉𝑓𝑟𝑒𝑒 ∪ 𝑉𝑜𝑐𝑐 =

𝑉\𝑉𝑟𝑒𝑠.

 Due to the nature of the problem, a suitable path has to be computed online
and in real-time, as free space to navigate is not known prior to its exploration.

Problem Definition: Volumetric Exploration



Receding Horizon Next-Best-View Exploration

 Goal: Fast and complete exploration of

unknown environments.

 Define sequences of viewpoints based

on vertices sampled using random trees.

 Select the path with the best sequence

of best views.

 Execute only the first step of this best

exploration path.

 Update the map after each iteration.

 Repeat the whole process in a receding

horizon fashion.



Exploration Planning (nbvplanner)



Exploration Planning (nbvplanner)

 Environment representation: Occupancy

Map dividing space 𝑉 into 𝑚 ∈ 𝑀 cubical

volumes (voxels) that can be marked

either as free, occupied or unmapped.

 Use of the octomap representation to

enable computationally efficient access

and search.

 Paths are planned only within the free
space 𝑉𝑓𝑟𝑒𝑒 and collision free point-to-

point navigation is inherently supported.

 At each viewpoint/configuration of the

environment 𝜉 , the amount of space

that is visible is computed as 𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝑀, 𝜉)

The Receding Horizon Next-Best-View

Exploration Planner relies on the real-time

update of the 3D map of the environment.



Exploration Planning (nbvplanner)

 Tree-based exploration: At every
iteration, nbvplanner spans a random

tree of finite depth. Each vertex of the

tree is annotated regarding the

collected Information Gain – a metric of

how much new space is going to be

explored.

 Within the sampled tree, evaluation

regarding the path that overall leads to

the highest information gain is

conducted. This corresponds to the best

path for the given iteration. It is a
sequence of next-best-views as sampled

based on the vertices of the spanned

random tree.



Exploration Planning (nbvplanner)

 Receding Horizon: For the extracted best

path of viewpoints, only the first

viewpoint is actually executed.

 The system moves to the first viewpoint of

the path of best viewpoints.

 The map is subsequently updated.

 Subsequently, the whole process is

repeated within the next iteration. This

gives rise to a receding horizon

operation.



nbvplanner Iterative Step

Exploration Planning (nbvplanner) Algorithm

 𝜉0 ←current vehicle configuration

 Initialize 𝑻 with 𝜉0 and, unless first planner call, also previous best branch

 𝑔𝑏𝑒𝑠𝑡 ← 0 // Set best gain to zero

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛0 𝜉0 // Set best node to root

 𝑁𝑇 ←Number of nodes in 𝑻

 while 𝑁𝑇 < 𝑁𝑚𝑎𝑥 or 𝑔𝑏𝑒𝑠𝑡 == 0 do

 Incrementally build 𝑻 by adding 𝑛𝑛𝑒𝑤 𝜉𝑛𝑒𝑤

 𝑁𝑇 ← 𝑁𝑇 + 1

 if 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤 > 𝑔𝑏𝑒𝑠𝑡 then

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛𝑛𝑒𝑤

 𝑔𝑏𝑒𝑠𝑡 ← 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤

 if 𝑁𝑇 > 𝑁𝑇𝑂𝑇 then

 Terminate exploration

 σ ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝑩𝒆𝒔𝒕𝑷𝒂𝒕𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕 𝑛𝑏𝑒𝑠𝑡

 Delete 𝑻

 return σ



Exploration Planning (nbvplanner) Remarks

 Inherently Collision-free: As all paths of
nbvplanner are selected along

branches within RRT-based spanned

trees, all paths are inherently collision-

free.

 Computational Cost: nbvplanner has a

thin structure and most of the

computational cost is related with

collision-checking functionalities. The

formula that expresses the complexity of

the algorithm takes the form:



nbvplanner Evaluation (Simulation)
 Simulation-based evaluation:

Explore a bridge.

 Comparison with Frontier-

based exploration.



Extension to Surface Inspection

Given a surface 𝑆, find a collision free path σ starting at an initial configuration
𝜉𝑖𝑛𝑖𝑡 ∈ Ξ that leads to the inspection of the part S𝑖𝑛𝑠𝑝, when being executed,

such that there does not exist any collision free configuration from which any
piece of 𝑆\𝑆𝑖𝑛𝑠𝑝 could be inspected. Thus, 𝑆𝑖𝑛𝑠𝑝 = 𝑆\𝑆𝑟𝑒𝑠.

 Let ഥ𝑉𝑠 ⊆ Ξ be the set of all configurations from which the surface piece 𝑠 ⊆
𝑆 can be inspected. Then the residual surface is given as 𝑆𝑟𝑒𝑠 =∪𝑠∈𝑆 (𝑠|ഥ𝑉𝑠 = 0)

Problem Definition: Surface Inspection



nbvplanner Evaluation (Simulation)
 Extension to surface inspection: The robot identifies trajectories that locally ensure

maximum information gain regarding surface coverage.



NBVP Evaluation (Experiment)

Kostas Alexis, Robotics Short Seminars, Feb 11 2016



EPP: Indicative Questions

 Describe a path planning algorithm for volumetric exploration

 What is the role of receding horizon path planning for the problem of

unknown area exploration



Thank you! 
Please ask your question!


