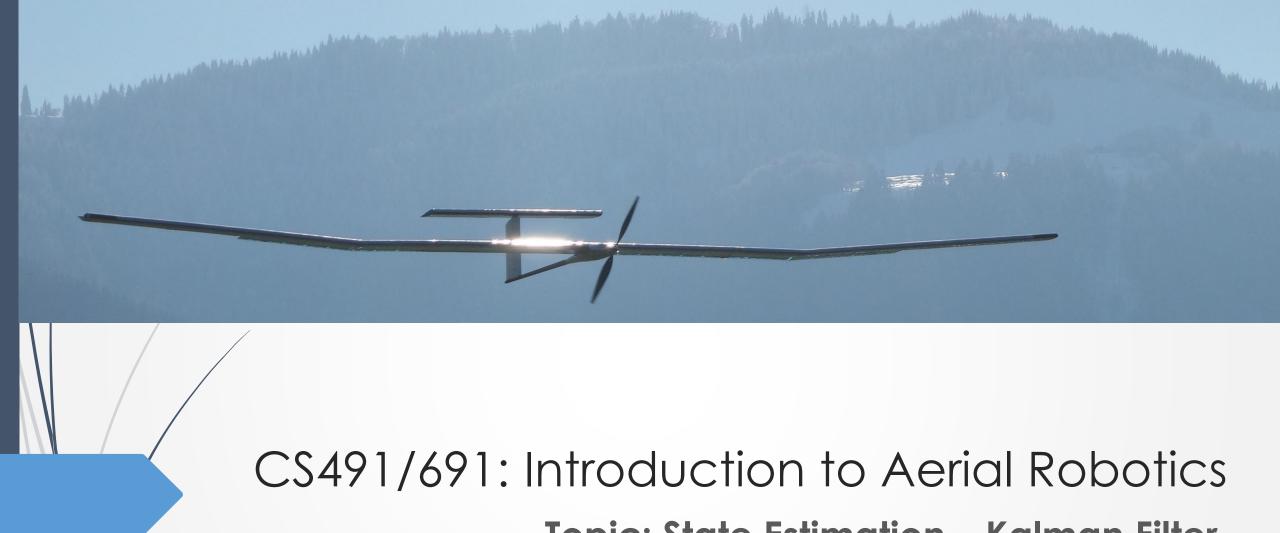


Topic: Recapitulate 2 – Advanced Topics

Dr. Kostas Alexis (CSE)

Contents

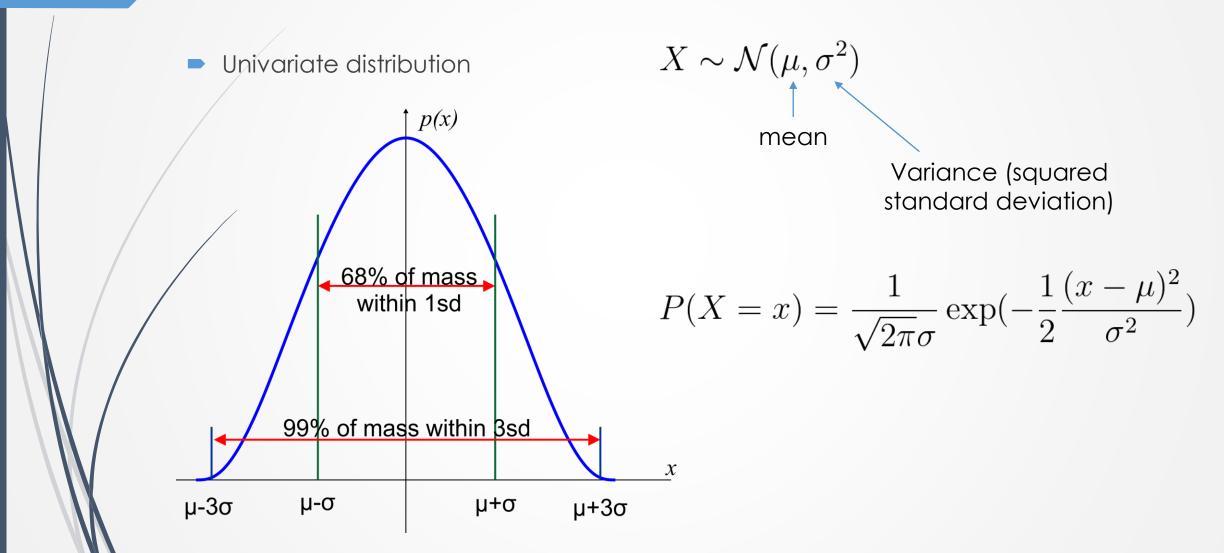
- We will recapitulate selected topics in:
 - Kalman Filter
 - Extended Kalman Filter
 - Exploration Path Planning



Topic: State Estimation – Kalman Filter

Dr. Kostas Alexis (CSE)

- Bayes filter is a useful tool for state estimation.
- Histogram filter with grid representation is not very efficient.
- How can we represent the state more efficiently?



- Multivariate normal distribution: $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$
- Mean: $\mu \in \mathcal{R}^n$
- -/Covariance: $\mathbf{\Sigma} \in \mathbf{R}^{n imes m}$
- Probability density function:

$$p(\mathbf{X} = \mathbf{x}) = \mathcal{N}(\mathbf{x}; \mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} \exp(-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu))$$

Properties of Normal Distributions

Linear transformation – remains Gaussian

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}), \mathbf{Y} \sim \mathbf{A}\mathbf{X} + \mathbf{B}$$

 $\Rightarrow \mathbf{Y} \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{B}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)$

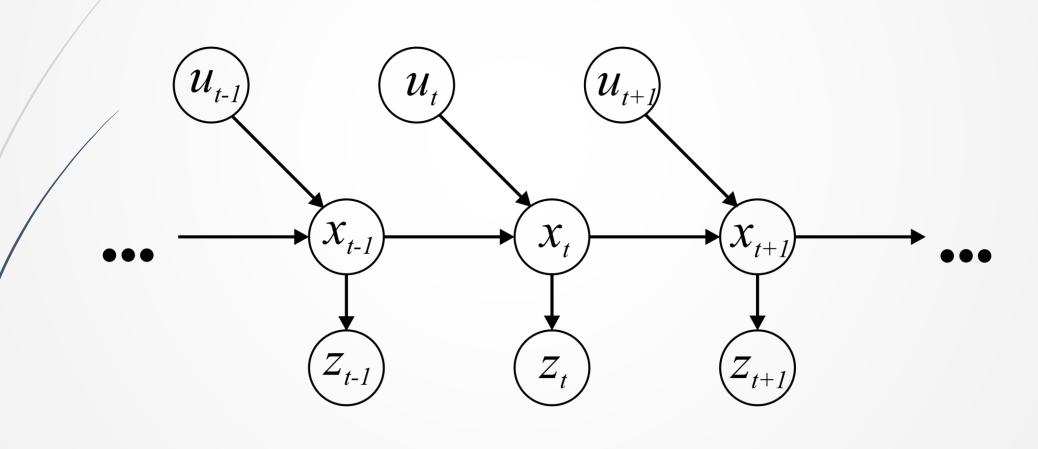
► Intersection of two Gaussians – remains Gaussian

$$\mathbf{X}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1), \mathbf{X}_2 \sim \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\mathbf{X}_1)p(\mathbf{X}_2) = \mathcal{N}\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}\right)$$

Linear Process Model

Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

Assume that the system evolves linearly over time, then depends linearly on the controls, and has zero-mean, normally distributed process noise

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$$

ullet With $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$

Linear Observations

 Further, assume we make observations that depend linearly on the state and that are perturbed zero-mean, normally distributed observation noise

$$\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$$

- With $\delta_t \sim \mathcal{N}(\mathbf{0},\mathbf{R})$

Estimates the state x_t of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$$

And (linear) measurements of the state

$$\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$$

• With $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ and $\delta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$

- lacksquare State $\mathbf{x} \in \mathbb{R}^n$
- ullet Controls $\mathbf{u} \in \mathbb{R}^l$
- -/Observations $\mathbf{z} \in \mathbb{R}^k$
- Process equation $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$
- Measurement equation $\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$

Initial belief is Gaussian

$$Bel(x_0) = \mathcal{N}(\mathbf{x}_0; \mu_0, \Sigma_0)$$

Next state is also Gaussian (linear transformation)

$$\mathbf{x}_t \sim \mathcal{N}(\mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{u}_t, \mathbf{Q})$$

Observations are also Gaussian

$$\mathbf{z}_t \sim \mathcal{N}(\mathbf{C}\mathbf{x}_t, \mathbf{R})$$

Recall: Bayes Filter Algorithm

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t) Bel(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}$$

Apply sensor model

$$Bel(\mathbf{x}_t) = \eta p(\mathbf{z}_t | \mathbf{x}_t) \overline{Bel}(\mathbf{x}_t)$$

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_t) = \int \underbrace{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)}_{\mathcal{N}(\mathbf{x}_t; \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_k t, \mathbf{Q})} \underbrace{Bel(\mathbf{x}_{t-1})}_{\mathcal{N}(\mathbf{x}_{t-1}; \mu_{t-1}, \mathbf{\Sigma}_{t-1})} d\mathbf{x}_{t-1}$$

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_t) = \int \underbrace{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)}_{\mathcal{N}(\mathbf{x}_t; \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_k t, \mathbf{Q})} \underbrace{Bel(\mathbf{x}_{t-1})}_{\mathcal{N}(\mathbf{x}_{t-1}; \mu_{t-1}, \mathbf{\Sigma}_{t-1})} d\mathbf{x}_{t-1}$$

$$= \mathcal{N}(\mathbf{x}_t; \mathbf{A}\mu_{t-1} + \mathbf{B}\mathbf{u}_t, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T + \mathbf{Q})$$

$$= \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t, \bar{\Sigma}_t)$$

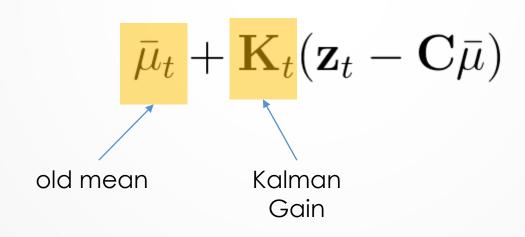
- For each step, do:
 - Apply sensor model

$$\overline{Bel}(\mathbf{x}_t) = \eta \underbrace{p(\mathbf{z}_t | \mathbf{x}_t)}_{\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R})} \underline{Bel}(\mathbf{x}_t)
\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R}) \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t, \bar{\Sigma}_t)
= \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}\bar{\mu}), (\mathbf{I} - \mathbf{K}_t)\mathbf{C})\bar{\Sigma})
= \mathcal{N}(x_t; \mu_t, \Sigma_t)$$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^T (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^T + \mathbf{R})^{-1}$$
 (Kalman Gain)

Blends between our previous estimate $\bar{\mu}_t$ and the discrepancy between our sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. And this depends on a formula based on the errors of sensing etc. In fact it depends on the ratio between our uncertainty Σ and the uncertainty of our sensor observations R.



- For each step, do:
 - Apply sensor model

$$\overline{Bel}(\mathbf{x}_t) = \eta \underbrace{p(\mathbf{z}_t | \mathbf{x}_t)}_{\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R})} \underline{Bel}(\mathbf{x}_t)
\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R}) \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t, \bar{\Sigma}_t)
= \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}\bar{\mu}), (\mathbf{I} - \mathbf{K}_t)\mathbf{C})\bar{\Sigma})
= \mathcal{N}(x_t; \mu_t, \Sigma_t)$$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^T (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^T + \mathbf{R})^{-1}$$
 (Kalman Gain)

Kalman Filter Algorithm

- For each step, do:
 - Apply motion model (prediction step)

$$\bar{\boldsymbol{\mu}}_t = \mathbf{A}\boldsymbol{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t$$

$$ar{\mathbf{\Sigma}}_t = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{ op} + \mathbf{Q}$$

Apply sensor model (correction step)

$$oldsymbol{\mu}_t = ar{oldsymbol{\mu}}_t + \mathbf{K}_t (\mathbf{z}_t - \mathbf{C}ar{oldsymbol{\mu}}_t)$$

$$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{C}) \mathbf{\bar{\Sigma}}_t$$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^ op (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^ op + \mathbf{R})^{-1}$$

Kalman Filter Algorithm

Prediction & Correction steps can happen in any order.

- For each step, do:
 - Apply motion model (prediction step)

$$ar{m{\mu}}_t = \mathbf{A}m{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t \ ar{m{\Sigma}}_t = \mathbf{A}m{\Sigma}\mathbf{A}^{ op} + \mathbf{Q}$$

Apply sensor model (correction step)

$$oldsymbol{\mu}_t = ar{oldsymbol{\mu}}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}ar{oldsymbol{\mu}}_t) \ oldsymbol{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t\mathbf{C})ar{oldsymbol{\Sigma}}_t$$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^ op (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^ op + \mathbf{R})^{-1}$$

Kalman Filter Algorithm

Prediction & Correction steps can happen in any order.

Prediction

$$ar{oldsymbol{\mu}}_t = \mathbf{A}oldsymbol{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t \ ar{oldsymbol{\Sigma}}_t = \mathbf{A}oldsymbol{\Sigma}\mathbf{A}^ op + \mathbf{Q}$$

Correction

$$egin{aligned} oldsymbol{\mu}_t &= ar{oldsymbol{\mu}}_t + \mathbf{K}_t (\mathbf{z}_t - \mathbf{C} ar{oldsymbol{\mu}}_t) \ oldsymbol{\Sigma}_t &= (\mathbf{I} - \mathbf{K}_t \mathbf{C}) ar{oldsymbol{\Sigma}}_t \ \mathbf{K}_t &= ar{oldsymbol{\Sigma}}_t \mathbf{C}^{ op} (\mathbf{C} ar{oldsymbol{\Sigma}}_t \mathbf{C}^{ op} + \mathbf{R})^{-1} \end{aligned}$$

Complexity

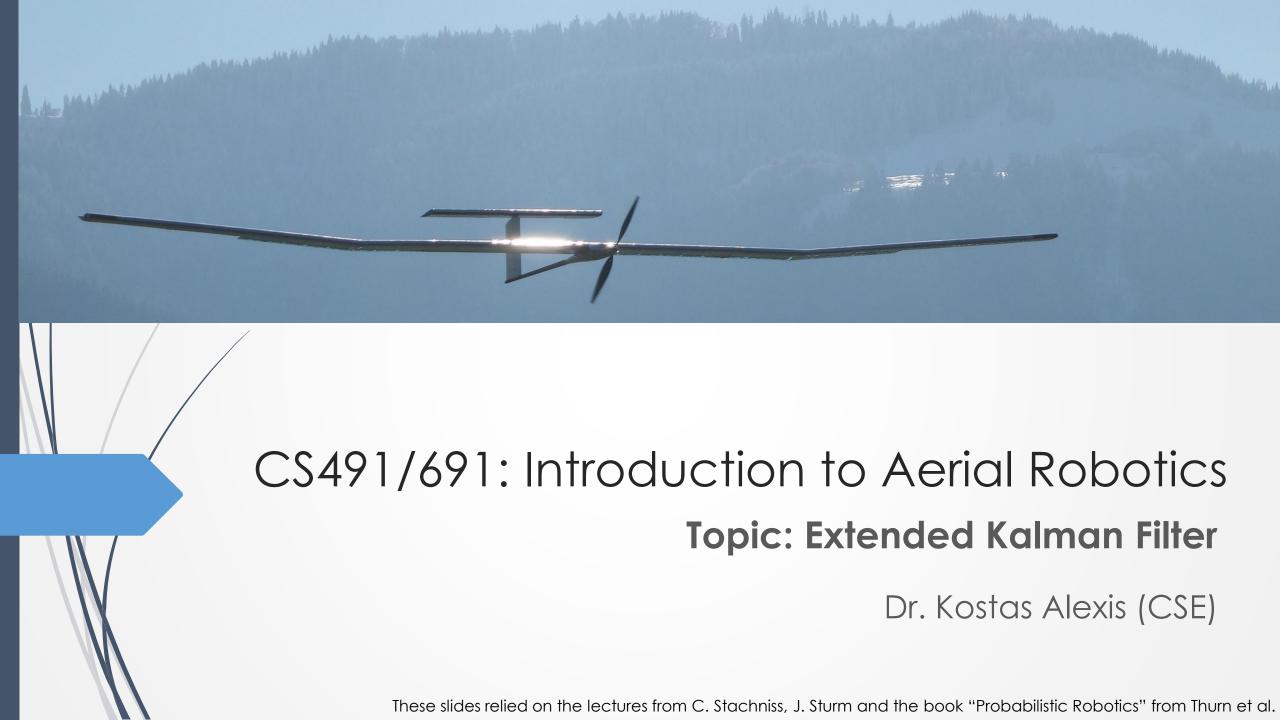
 Highly efficient: Polynomial in the measurement dimensionality k and state dimensionality n

$$O(k^{2.376} + n^2)$$

- Optimal for linear Gaussian systems
 - But most robots are nonlinear! This is why in practice we use Extended Kalman Filters and other approaches.

KF: Indicative Questions

- Describe the Kalman Filter for a linear process of the form $\dot{x} = Ax + Bu$
- Explain the statistical role of the Kalman Gain



Kalman Filter Assumptions

- Gaussian distributions and noise
- Linear motion and observation model
 - What if this is not the case?

$$x_t = A_t x_{t-1} + B_t u_t + \epsilon_t$$

$$z_t = C_t x_t + \delta_t$$

Linearity Assumption Revisited



Nonlinear Function



Nonlinear Dynamical Systems

- Real-life robots are mostly nonlinear systems.
- The motion equations are expressed as nonlinear differential (or difference) equations:

$$x_t = g(u_t, x_{t-1})$$

Also leading to a nonlinear observation function:

$$z_t = h(x_t)$$

Taylor Expansion

- Solution: approximate via linearization of both functions
- Motion Function:

$$g(x_{t-1}, u_t) \approx g(\mu_{t-1}, u_t) + \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$= g(\mu_{t-1}, u_t) + G_t(x_{t-1} - \mu_{t-1})$$

Observation Function:

$$h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \mu_t)$$
$$= h(\bar{\mu}_t) + H_t(x_t - \mu_t)$$

Reminder: Jacobian Matrix

- It is a non-square matrix mxn in general
- ► Given a vector-valued function:

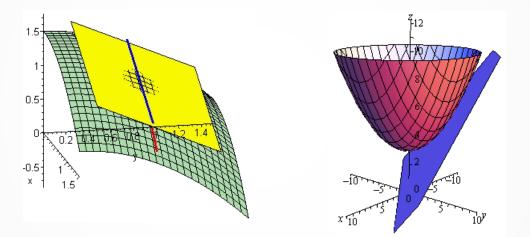
$$g(x) = \begin{pmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{pmatrix}$$

The **Jacobian matrix** is defined as:

$$G_{x} = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}} & \frac{\partial g_{m}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}} \end{pmatrix}$$

Reminder: Jacobian Matrix

It is the orientation of the tangent plane to the vector-valued function at a given point



Courtesy: K. Arras

Generalizes the gradient of a scaled-valued function.

Extended Kalman Filter

- For each time step, do:
- Apply Motion Model:

$$ar{\mu}_t = g(\mu_{t-1}, u_t)$$
 $ar{\Sigma}_t = G_t \Sigma G_t^\top + Q$ with $G_t = \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}}$

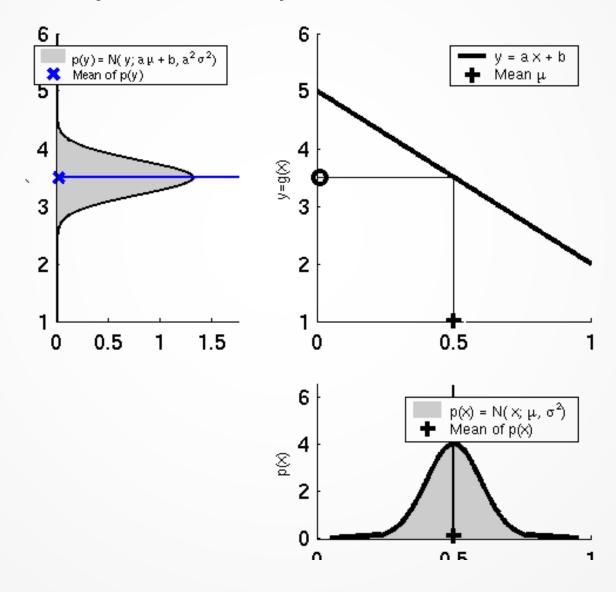
Apply Sensor Model:

$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

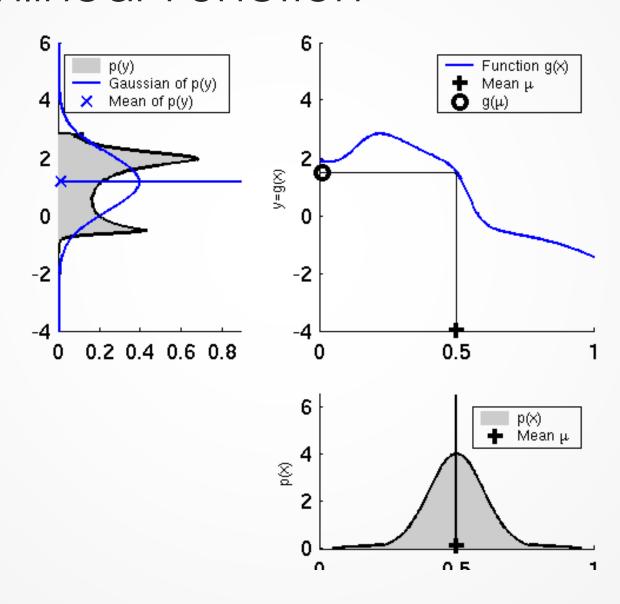
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

where
$$K_t = \bar{\Sigma}_t H_t^{\top} (H_t \bar{\Sigma}_t H_t^{\top} + R)^{-1}$$
 and $H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t}$

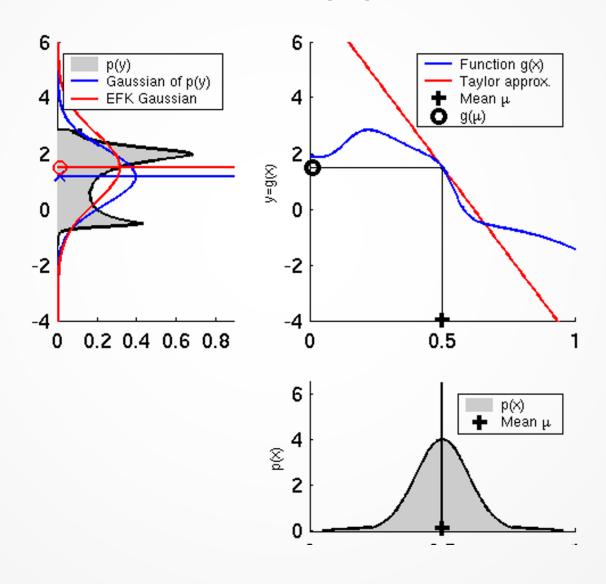
Linearity Assumption Revisited



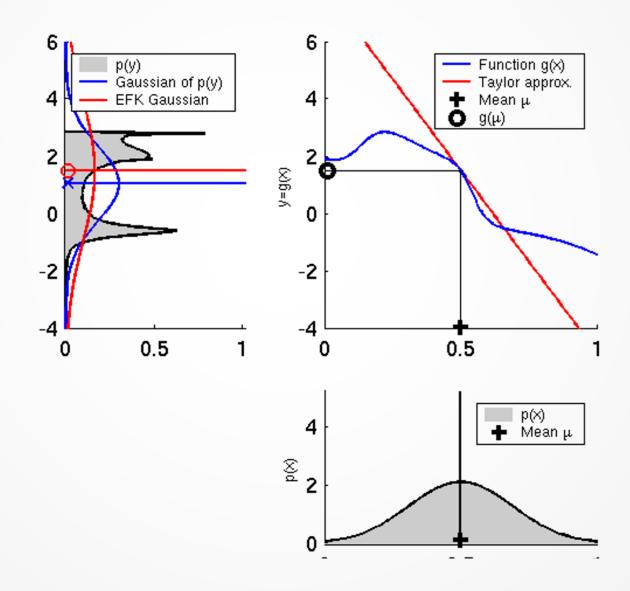
Nonlinear Function



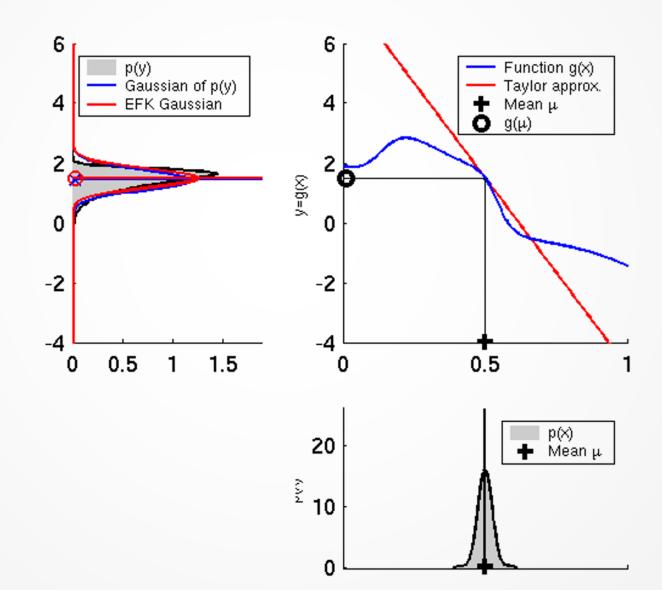
EKF Linearization (1)



EKF Linearization (2)



EKF Linearization (3)



Linearized Motion Model

The linearized model leads to:

$$p(x_t \mid u_t, x_{t-1}) \approx \det (2\pi R_t)^{-\frac{1}{2}}$$

$$\exp \left(-\frac{1}{2} (x_t - g(u_t, \mu_{t-1}) - G_t (x_{t-1} - \mu_{t-1}))^T \right)$$

$$R_t^{-1} (x_t - g(u_t, \mu_{t-1}) - G_t (x_{t-1} - \mu_{t-1}))$$
linearized model

 $lacktriangleright R_t$ describes the noise of the motion.

Linearized Observation Model

The linearized model leads to:

$$p(z_t \mid x_t) = \det (2\pi Q_t)^{-\frac{1}{2}}$$

$$\exp \left(-\frac{1}{2} \left(z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t\right)\right)^T\right)$$

$$Q_t^{-1} \left(z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t\right)\right)$$
linearized model

 $lackbox{ }Q_t$ describes the noise of the motion.

EKF Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

2:
$$\bar{\mu}_t = \underline{g(u_t, \mu_{t-1})}$$

3: $\bar{\Sigma}_t = \overline{G_t \Sigma_{t-1} G_t^T} + R_t$

$$A_t \leftrightarrow G_t$$

4:
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$
 $C_t \leftrightarrow H_t$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \underline{h}(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return
$$\mu_t, \Sigma_t$$

KF vs EKF

EKF Summary

- Extension of the Kalman Filter.
- One way to deal with nonlinearities.
- Performs local linearizations.
- Works well in practice for moderate nonlinearities.
- Large uncertainty leads to increased approximation error.

EKF: Indicative Questions

- Describe the Extended Kalman Filter for a linear process of the form $\dot{x} = f(x,u)$
- Explain the statistical role of the Kalman Gain for nonlinear systems



Dr. Kostas Alexis (CSE)

The Exploration path planning problem

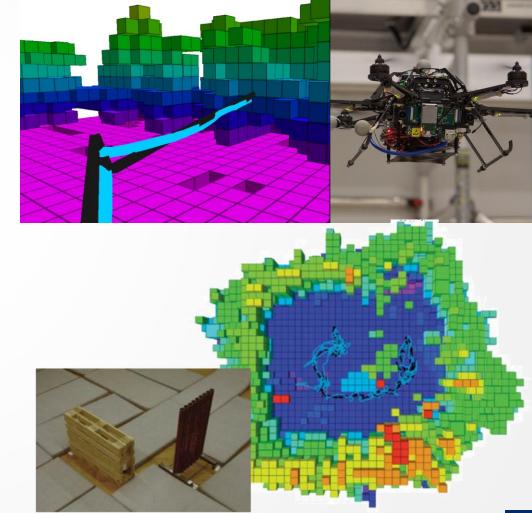
Problem Definition: Volumetric Exploration

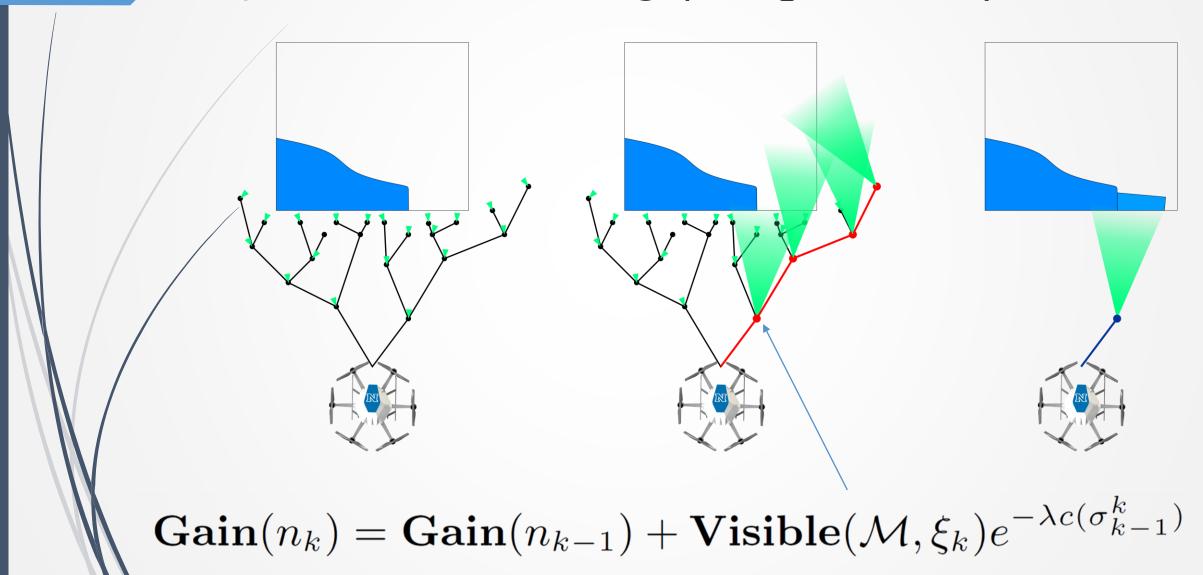
The exploration path planning problem consists in **exploring a previously unknown** bounded 3D space $V \subset \mathbb{R}^3$. This is to determine which parts of the initially unmapped space $V_{unm} = V$ are free $V_{free} \subset V$ or occupied $V_{occ} \subset V$. The operation is subject to vehicle kinematic and dynamic constraints, localization uncertainty and limitations of the employed sensor system with which the space is explored.

- As for most sensors the perception stops at surfaces, hollow spaces or narrow pockets can sometimes not be explored with a given setup. This residual space is denoted as V_{res} . The problem is considered to be fully solved when $V_{free} \cup V_{occ} = V \setminus V_{res}$.
- Due to the nature of the problem, a suitable path has to be computed online and in real-time, as free space to navigate is not known prior to its exploration.

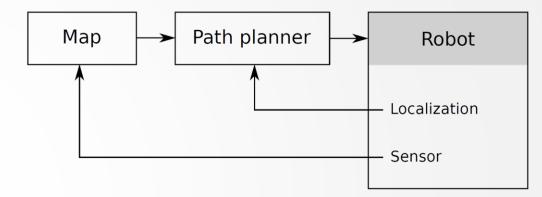
Receding Horizon Next-Best-View Exploration

- Goal: Fast and complete exploration of unknown environments.
- Define sequences of viewpoints based on vertices sampled using random trees.
- Select the path with the best sequence of best views.
- Execute only the first step of this best exploration path.
- Update the map after each iteration.
- Repeat the whole process in a receding horizon fashion.

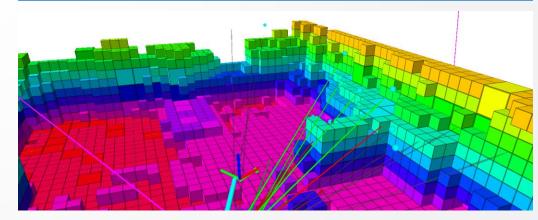




- **Environment representation:** Occupancy Map dividing space V into $m \in M$ cubical volumes (voxels) that can be marked either as free, occupied or unmapped.
- Use of the octomap representation to enable computationally efficient access and search.
- Paths are planned only within the free space V_{free} and collision free point-to-point navigation is inherently supported.
- At each viewpoint/configuration of the environment ξ , the amount of space that is visible is computed as $Visible(M, \xi)$



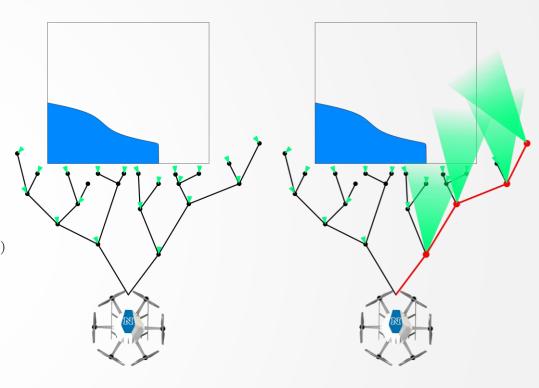
The Receding Horizon Next-Best-View Exploration Planner relies on the real-time update of the 3D map of the environment.



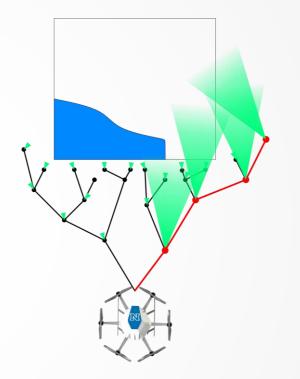
Tree-based exploration: At every iteration, nbvplanner spans a random tree of finite depth. Each vertex of the tree is annotated regarding the collected Information Gain – a metric of how much new space is going to be explored.

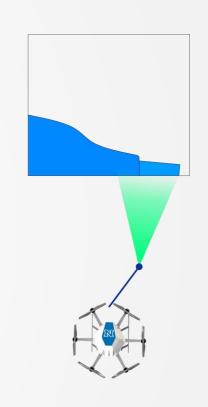
$$\mathbf{Gain}(n_k) = \mathbf{Gain}(n_{k-1}) + \mathbf{Visible}(\mathcal{M}, \xi_k)e^{-\lambda c(\sigma_{k-1}^k)}$$

Within the sampled tree, evaluation regarding the path that overall leads to the highest information gain is conducted. This corresponds to the best path for the given iteration. It is a sequence of next-best-views as sampled based on the vertices of the spanned random tree.



- Receding Horizon: For the extracted best path of viewpoints, only the first viewpoint is actually executed.
- The system moves to the first viewpoint of the path of best viewpoints.
- The map is subsequently updated.
- Subsequently, the whole process is repeated within the next iteration. This gives rise to a receding horizon operation.





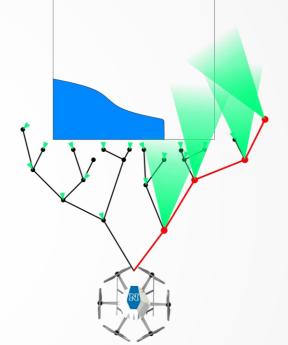
Exploration Planning (nbvplanner) Algorithm

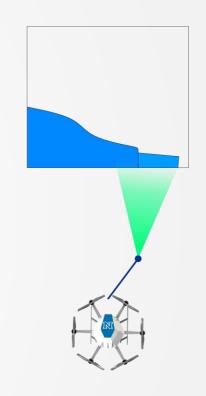
nbvplanner Iterative Step

- $\xi_0 \leftarrow$ current vehicle configuration
- Initialize T with ξ_0 and, unless first planner call, also previous best branch
- $g_{best} \leftarrow 0$ // Set best gain to zero
- $n_{best} \leftarrow n_0(\xi_0)$ // Set best node to root
- $N_T \leftarrow \text{Number of nodes in } T$
- while $N_T < N_{max}$ or $g_{best} == 0$ do
 - Incrementally build T by adding $n_{new}(\xi_{new})$
 - $N_T \leftarrow N_T + 1$
 - if $Gain(n_{new}) > g_{best}$ then
 - $n_{best} \leftarrow n_{new}$
 - $g_{best} \leftarrow Gain(n_{new})$
 - if $N_T > N_{TOT}$ then
 - Terminate exploration
- $\sigma \leftarrow ExtractBestPathSegment(n_{best})$
- Delete T
- return σ

Exploration Planning (nbvplanner) Remarks

- Inherently Collision-free: As all paths of nbvplanner are selected along branches within RRT-based spanned trees, all paths are inherently collisionfree.
- Computational Cost: nbvplanner has a thin structure and most of the computational cost is related with collision-checking functionalities. The formula that expresses the complexity of the algorithm takes the form:

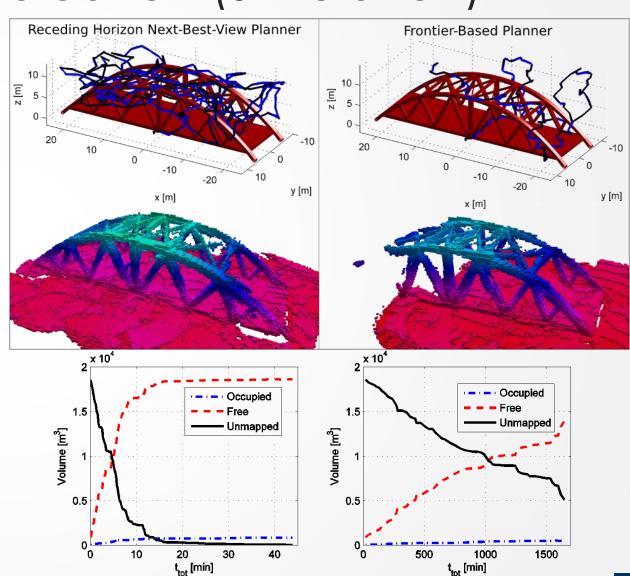




$$\mathcal{O}(N_{\mathbb{T}}\log(N_{\mathbb{T}}) + N_{\mathbb{T}}/r^3\log(V/r^3) + N_{\mathbb{T}}(d_{\max}^{ ext{planner}}/r)^4\log(V/r^3))$$

nbvplanner Evaluation (Simulation)

- Simulation-based evaluation: Explore a bridge.
- Comparison with Frontierbased exploration.



Extension to Surface Inspection

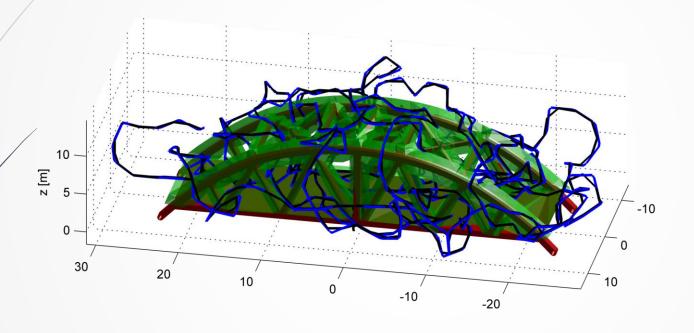
Problem Definition: Surface Inspection

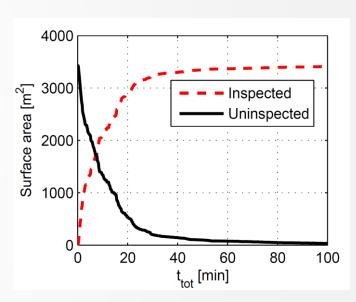
Given a surface S, find a collision free path σ starting at an initial configuration $\xi_{init} \in \Xi$ that leads to the inspection of the part S_{insp} , when being executed, such that there does not exist any collision free configuration from which any piece of $S \setminus S_{insp}$ could be inspected. Thus, $S_{insp} = S \setminus S_{res}$.

Let $\overline{V_s} \subseteq \Xi$ be the set of all configurations from which the surface piece $s \subseteq S$ can be inspected. Then the residual surface is given as $S_{res} = \cup_{s \in S} (s | \overline{V_s} = 0)$

nbvplanner Evaluation (Simulation)

Extension to surface inspection: The robot identifies trajectories that locally ensure maximum information gain regarding surface coverage.





y [m]

x [m]

EPP: Indicative Questions

- Describe a path planning algorithm for volumetric exploration
- What is the role of receding horizon path planning for the problem of unknown area exploration

