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Coordinate Frames

= |n Guidance, Navigation and Control of aerial robofs,
reference coordinate frames are fundamental.

= Describe the relative position and orientation of:
= Aerial Robot relative to the Inertial Frame
= On-board Camera relative to the Aerial Robot body

= Aerial Robot relative to Wind Direction

= Some expressions are easier to formulate in specific F
frames: Vv
= Newton's law F
/

» Acrial Robot Atfitude

» Aerodynamic forces/moments

= |nertial Sensor data
» GPS coordinates

» Camera frames




Rotation of Reference Frame

» Rotation around the k-axis
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Rotation of Reference Frame

» Rotation around the i-axis
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Rotation of Reference Frame
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Rotation of Reference Frame
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Rotation of Reference Frame
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Inertial & Vehicle Frames

Vehicle and Inerfial frame
have the same orientation.

Vehicle frame is fixed at the
Center of Mass (CoM).

Both considered as “NED”
frames (North-East-Down).

NED (N)




How 1o represent orientatione

Euler Angles Quaternions
[QZS? 99 w] [q1? 42, 43, q4]
= Advantages: = Advantages:
= |nfuitive - directly related = Singularity-free.

with the axis of the vehicle. = Computationally efficient.

- Uiscieivelnvielelss = Disadvantages:

= Singularity — Gimbal Lock. = Non-intuitive



How 1o represent orientatione

/

Euler Angles

@, 0, 9]

= Advantages:

» |ntuitive - directly related
with the axis of the vehicle.

= Disadvantages:

= Singularity — Gimbal Lock.

S

We wiill start here...

Quaternions

[qla 42, 43, q51]

= Advantages:

= Singularity-free.

= Computationally efficient.

= Disadvantages:

= Non-intuitive

¢ - roll

(9 - pitch

Qp - YOW



Vehicle-1 Frame
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= yrepresentfs the yaw angle




Vehicle-2 Fraome
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» ¢represents the pitch angle
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Body Frame
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= ¢ represents the roll angle




Inertial Frame to Body Frame
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Further Application to Robot Kinematics

= [p,q,r] : body angular rates

= [u,v,w] : body linear velocities




Relate Translational Velocity-Position

= | et [uv,w] represent the body linear velocities
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Body Rates — Euler Rates

= |et [p,q,r] denote the body angular rates
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How 1o represent orientatione

Euler Angles Quaternions
[Qb? 9? ¢] [qh 42, 43, q4]
= Advantages: = Advantages:
= |nfuitive - directly related = Singularity-free.
with the axis of the vehicle. : -
= Computationally efficient.

- Liseevelelefss = Disadvantages:

= Singularity — Gimbal Lock. = Non-intuitive
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Quaternions

= Complex numbers form a plane : their operations are highly related with 2-

dimensional geometry.

= |n particular, multiplication by a unit complex number:

2
27 =1
which can all be written:
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gives a rotation
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Quaternions

= Theorem by Euler states that any given sequence of rotations can be
represented as a single rotatfion about a fixed-axis

» Quaternions provide a convenient parametrization of this effective axis and
a rotation angle:

g1 -
g = G2 | _ F sin %
qs3 COS %
|4

= Where E is a unit vector and( is a positive rotation about E




Quaternions

= Note that |G| = 1 and therefore there are only 3 degrees of freedom in this
formulation also.

» |f q_ represents the rotational transformation from the reference frame A to
the reference frame B,_the frame A is aligned with B when frame A is rotated
by C radians around F/

= This representation is connected with the Euler angles form, according to the
following expression:

sin 6 —2(q2q4 + q1q3)
¢ | = |arctan 2[2(gaqz — q1q4), 1 — 2(¢? + ¢3)]
(U] arctan 2[2(q1q2 — q3qa), 1 — 2(¢3 + ¢3)]




Quaternions

This representation has the great advantage of being:
Singularity-free and

Computationally efficient to do state propagation (typically within an Extended
Kalman Filter)

n the other hand, it has one main disadvantage, namely being far less
intuitive.




Code Example

= Python Coordinate Transformations Example

»  https://github.com/unr-arl/autonomous mobile robot design course/tree/master/python/coord-trans

- Functionality identical to default settings of MATLAB Aerospace Toolbox
- Implements: Quaternion-to/from-RotationMatrix, Quaternion-to/from-RollPitchYaw

- python QuatEulerMain.py



https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/python/coord-trans

Code Example

=» |ndicative in-class run




FInd out more

http://page.math.tu-berlin.de/~plaue/plaue_intro_quats.pdf

http://mathworld.wolfram.com/RotationMatrix.html

http://mathworld.wolfram.com/EulerAngles.html

http://blog.wolframalpha.com/2011/08/25/quaternion-properties-and-
mteractive-rotations-with-wolframalpha/

http://www.mathworks.com/discovery/rotation-matrix.ntml

http://www.mathworks.com/discovery/qguaternion.himlerefresh=true

http://www.cprogramming.com/tutorial/3d/rotationMatrices.html

http://www.cprogramming.com/tutorial/3d/qguaternions.html

Help with Linear Algebra? https://www.khanacademy.org/math/linear-
algebra

Always check: hitp://www.kostasalexis.com/literature-and-links1.html
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(Rledise ask your question
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