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Introduction

We will discuss three-dimensional geometry and specifically the concept of rotation and
different ways to represent it.

We focus also on transformations between reference frames.

We will discuss explicitly the three-dimensional derivations as it relates to IMU readings,
stereo vision and more.

Main reference: Barfoot, T.D., 2017. State estimation for robotics. Cambridge University
Press.
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Vectors and Reference Frames

For a single rigid body, let us define its pose as the 6-DoF geometric configuration

pose = [position, orientation] (1)

Vehicles may involve multiple rigid bodies, for example quadrupeds, humanoids, snake robots
and more. Here we focus explicitly on the case of a single rigid body.
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Reference Frames

We often have to utilize a set of reference frames to represent the motion of a vehicle. Here
we present the inertial frame Fi and the vehicle frame Fυ.

Figure: Vehicle and typical reference frames.
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Reference Frames

The position of a point on a vehicle can be described with a vector rυi , consisting of three
components. Rotational motion is described by expressing the orientation of a reference frame
attached on the vehicle, Fυ, with respect to another frame, Fi . Let us take a vector to be a
quantity r having both length and direction and expressed in a reference frame as

r = r111 + r212 + r313 = [r1 r2 r3]

1112
13

 = rT1 F1 (2)

where

F1 =

1112
13

 , r1 =

r1r2
r3

 (3)

and Fi , called a vectrix, is a column with the basis vectors forming the reference frame Fi .
The basis vectors are all unit length, orthogonal, and arranged in right-handed (dextral)
fashion. The quantity r1 is a column matrix containing the components of r in F1.
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Reference Frames

Vector r can also be written as

r = [11 12 13]

r1r2
r3

 = FT
1 r1 (4)
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Dot Product

Considering two vectors, r and s, expressed in the same frame F1

r = [r1 r2 r3]

1112
13

 , s = [11 12 13]

s1s2
s3

 (5)

The dot product (inner product) is given by

r · s = [r1 r2 r3]

1112
13

 · [11 12 13]

s1s2
s3

 (6)

= [r1 r2 r3]

11 · 11 11 · 12 11 · 13
12 · 11 12 · 12 12 · 13
13 · 11 13 · 12 13 · 13

s1s2
s3


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Dot Product

But it holds that

11 · 11 = 12 · 12 = 13 · 13 = 1

11 · 12 = 12 · 13 = 13 · 11 = 0

Thus
r · s = rT1 1s1 = rT1 s1 = r1s1 + r2s2 + r3s3 (7)

where 1 here denotes the identity matrix and its dimensions are inferred from the expression.
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Cross Product

The cross product of two vectors expressed in the same reference frame is given by

r × s =
[
r1 r2 r3

] 11 × 11 11 × 12 11 × 13
12 × 11 12 × 12 12 × 13
13 × 11 13 × 12 13 × 13

s1s2
s3


=

[
r1 r2 r3

]  0 13 −12
−13 0 11
12 −11 0

s1s2
s3


=

[
11 12 13

]  0 −r3 r2
r3 0 −r1
−r2 r1 0

s1s2
s3


= FT

1 r×1 s1

exploiting that the basis vectors are orthogonal and arranged in dextral fashion.
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Cross Product

Hence, if r and s are expressed in the same reference frame, then the 3× 3 matrix

r×1 =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 (8)

can be used to construct the components of the cross product. This matrix is
skew-symmetric which entails that

(r×1 )
T = −r×1 (9)

and it is easy to verify that
r×1 r1 = 0 (10)

where 0 is a column matrix of zeros and

r×1 s1 = −s
×
1 r1 (11)
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Cross Product

Skew-symmetric Matrix

A skew-symmetric matrix A is a square matrix whose transpose equals its negative:

AT = −A (12)

With respect to this entries, aij , then the skew-symmetric condition is equivalent to

aji = −aij (13)
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Rotation Matrices

Let us consider two frames F1 and F2 with a common origin, and let us express r in each
frame

r = FT
1 r1 = FT

2 r2 (14)

we seek to discover a relationship between the components in F1, r1 and those in F2, r2.

Figure: We discuss the derivation of vector r .
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Rotation Matrices

It holds that

FT
2 r2 = FT

1 r1

F2 · FT
2 r2 = F2 · FT

1 r1 (15)

r2 = C21r1

C21 = F2 · FT
1

=
[
21 22 23

]T · [11 12 13
]

=

21 · 11 21 · 12 21 · 13
22 · 11 22 · 12 22 · 13
23 · 11 23 · 12 23 · 13

 (16)

where the matrix C21 is called a rotation matrix. It is also called DCM (direction cosine
matrix) as the dot product of two unit vectors is just the cosine of the angle between them.
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Rotation Matrices

The unit vectors expressed in F2 can be related to those in F1 as

FT
1 = FT

2 C21 (17)
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Rotation Matrices

Rotation matrices possess certain special properties

r1 = C−1
21 r2 = C12r2 (18)

But CT
21 = C12 thus

C12 = C−1
21 = CT

21 (19)

which means that C21 is an orthogonal matrix as its inverse is equal to its transpose.
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Rotation Matrices

Consider three reference frames F1,F2,F3. The components of a vector r in these frames are
r1, r2, r3. Then

r3 = C32r2 = C32C21r1 (20)

But r3 = C31r1 and thus
C31 = C32C21 (21)

(chaining)
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Principal Rotations

Before considering more general rotations, we look at the rotations about one basis vector.
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Principal Rotations

Rotation around the 3-axis

C3 =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 (22)

Figure: Rotation about the 3-axis.
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Principal Rotations

Rotation around the 2-axis

C2 =

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

 (23)

Figure: Rotation about the 2-axis.
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Principal Rotations

Rotation around the 1-axis

C1 =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 (24)

Figure: Rotation about the 1-axis.
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Alternate Rotation Representations

The orientation of one reference frame to another may be expressed in a multitude of ways.
We have seen the rotation matrix which describes the orientation both globally and
uniquely, which in turn requires nine parameters which are not independent. Yet, there are
alternatives.

For a rotation there are only three underlying degrees of freedom.

Representations using more than three parameters must have associated constraints to
limit the number of degrees of freedom to three.

Representations that have exactly three parameters will have associated singularities.

There is no ideal representation, one that would be minimal (three parameters) and be
also free of singularities.
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Euler Angles

The orientation of one reference frame wrt the other can be noted by a sequence of principal
rotations, with one possible sequence being

1 A rotation ψ about the original 3-axis (“precession angle”)

2 A rotation γ about the the intermediate 1-axis (“nutation angle”)

3 A rotation θ about the transformed 3-axis (“spin angle)
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Euler Angles

Figure: Euler angles noted.
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Euler Angles

The rotation matrix from frame 1 to frame 2 takes the form (chaining through intermediate
frames)

C21(θ, γ, ψ) = C2TCTICI1

= C3(θ)C1(γ)C3(ψ)

=

 cθcψ − sθcγsψ sψcθ + cγsθcψ sγsθ
−cψsθ − cθcγsψ −sψsθ + cθcγcψ sγcθ

sψsγ −sγcψ cγ

 (25)
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Euler Angles

Another possible sequence, commonly used in aerospace, is

1 A rotation θ1 about the original 1-axis (“roll” rotation)

2 A rotation θ2 about the intermediate 2-axis (“pitch” rotation)

3 A rotation θ3 about the transformed 3-axis (“yaw” rotation)

In this case the rotation matrix from frame 1 to 2 takes the form

C21(θ3, θ2, θ1) = C3(θ3)C(θ2)C1(θ1)

=

 c2c3 c1s3 + s1s2c3 s1s3 − c1s2c3
−c2s3 c1c3 − s1s2s3 s1c3 + c1s2s3
s2 −s1c2 c1c2

 (26)
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Euler Angles

All Euler sequences have singularities.
For the 3-1-3 sequence, if γ = 0 then the angles θ and ψ become associated with the same
degree of freedom and cannot be uniquely determined.
For the 1-2-3 sequence, a singularity exists at θ2 = π/2 (“pitch”). In this case it holds

C21(θ3,
π

2
, θ1) =

0 sin(θ1 + θ3) − cos(θ1 + θ3)
0 cos(θ1 + θ3) sin(θ1 + θ3)
1 0 0

 (27)

thus θ1 and θ3 are associated with the same rotation.
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Infinitesimal Rotations

Consider the 1-2-3 transformation when θ1, θ2, θ3 small. Then we can approximate

ci ≈ 1

si ≈ θi
θiθj ≈ 0

Then it holds

C21 ≈

 1 θ3 −θ2
−θ3 1 θ1
θ2 −θ1 1

 ≈ 1− θ× (28)

where
θ =

[
θ1 θ2 θ3

]T
(29)

which is referred to as a rotation vector.
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Infinitesimal Rotations

For infinitesimal rotations (small angle approximation), the order of rotations does not matter
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Euler Parameters

Euler’s rotation theorem

In a 3D space, any displacement of a rigid body such that a point on the rigid body remains
fixed, is equivalent to a single rotation about some axis that runs through the fixed point.

It also means that the composition of two rotations is also a rotation.

Therefore the set of rotations has a group structure, known as a rotation group.

The most general motion of a rigid body with one point fixed is a rotation about an axis
through that point.
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Euler Parameters

Let us denote the axis of rotation by a = [a1 a2 a3]
T and assume that it is a unit vector

aTa = a21 + a22 + a23 = 1 (30)

The angle of rotation is ϕ. The rotation matrix in this case is given by

C21 = cosϕ1+ (1− cosϕ)aaT − sinϕa× (31)

while it is noted that the frame in which a is expressed does not matter because

C21a = a (32)
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Euler Parameters

The combination of variables

η = cos
ϕ

2
, ε = a sin

ϕ

2
=

a1 sin(ϕ/2)a2 sin(ϕ/2)
a3 sin(ϕ/3)

 =

ε1ε2
ε3

 (33)

is particularly useful and the four parameters {ε, η} are called the Euler parameters
associated with a rotation. These parameters are not independent and satisfy the constraint

η2 + ε21 + ε22 + ε23 = 1 (34)
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Euler Parameters

Then the rotation matrix can be expressed in terms of the Euler parameters as

C21 = (η2 − εTε)1+ 2εεT − 2ηε×

=

1− 2(ε22 + ε23) 2(ε1ε2 + ε3η) 2(ε1ε3 − ε2η)
2(ε2ε1 − ε3η) 1− 2(ε23 + ε21) 2(ε2ε3 + ε1η)
2(ε3ε1 + ε2η) 2(ε3ε2 − ε1η) 1− 2(ε21 + ε22)

 (35)
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Euler Parameters

Euler parameters advantages

there are no singularities associated with them.

the calculation of the rotation matrix does not involve trigonometric functions offering a
numerical advantage.

Euler parameters disadvantages

we have to use four parameters instead of three, as is the case with Euler angles.

this makes it challenging to perform some estimation problems because the constraint
must be enforced.
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Quaternions

A quaternion will be a 4× 1 column that may be written as

q =

[
ε
η

]
(36)

where ε is a 3× 1 and η is a scalar.
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Quaternions

The quaternion left-handed compound operator, +, and the right-hand compound
operator, ⊕, are defined as

q+ =

[
η1− ε× ε
−εT η

]
, q⊕ =

[
η1+ ε× ε
−εT η

]
(37)
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Quaternions

The inverse operator, −1, is defined as

q−1 =

[
−ε
η

]
(38)
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Quaternions

Let u, v,w be quaternions. Then the following identities hold

u+v ≡ v⊕u u+v⊕ ≡ v⊕u+

(u+)T ≡ (u+)−1 ≡ (u−1)+ (u⊕)T ≡ (u⊕)−1 ≡ (u−1)⊕

(u+v)−1 ≡ v−1+u−1 (u⊕v)−1 ≡ v−1⊕u−1

(u+v)+w ≡ u+(v+w) ≡ u+v+w (u⊕v)⊕w ≡ u⊕(v⊕w) ≡ u⊕v⊕w
au+ + βv+ ≡ (au+ βv)+ au⊕ + βv⊕ ≡ (au+ βv)⊕
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Quaternions

Quaternions form a non-cummutative group under the + and ⊕ operators. The identity
element of this group ι = [0 0 0 1]T is such that

ι+ = ι⊕ = 1 (39)

where 1 being 4× 4
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Quaternions

Rotations may be represented in this notation by using a unit-length quaternion, q such that

qTq = 1 (40)

To rotate a point in homogeneous form

v =


x
y
z
1

 (41)

to another frame using the rotation, q, we write

u = q+v+q−1 = q+q−1⊕v = Rv (42)

R = q+q−1⊕ = q−1⊕q+ = q⊕
T
q+ =

[
C 0
0T 1

]
(43)

where C is the 3× 3 rotation matrix.
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Gibbs Vector

An alternative parametrization of rotations is through the Gibbs vector. In terms of
axis/angle parameters discussed, the Gibbs vector, g, takes the form

g = a tan
ϕ

2
(44)

which has a singularity at ϕ = π.
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Gibbs Vector

The rotation matrix, C, can then be written in terms of the Gibbs vector as

C = (1+ g×)−1(1− g×) =
1

1 + gTg

(
(1− gTg)1+ 2ggT − 2g×

)
(45)
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Gibbs Vector

Substituting in the Gibss vector definition, the right hand expression takes the form

C =
1

1 + tan2 ϕ2

((
1− tan2

ϕ

2

)
1+ 2 tan2

ϕ

2
aaT − 2 tan

ϕ

2
a×

)
(46)

where we have used that aTa = 1.
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Gibbs Vector

Given that (1 + tan2 ϕ2 )
−1 = cos2 ϕ2 we have

C =

(
cos2

ϕ

2
− sin2

ϕ

2

)
︸ ︷︷ ︸

cosϕ

1+ 2 sin2
ϕ

2︸ ︷︷ ︸
1−cosϕ

aaT − 2 sin
ϕ

2
cos

ϕ

2︸ ︷︷ ︸
sinϕ

a×

= cosϕ1+ (1− cosϕ)aaT − sinϕa× (47)

which took the form of the usual expression for the rotation matrix in terms of the axis/angle
parameters.
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Gibbs Vector

To then relate the two derived expressions for matrix C in terms of g we note

(1+ g×)−1 = 1− g× + g×g× − g×g×g× + ... =
∞∑
n=0

(−g×)n (48)

Then we observe that

gTg(1+ g×)−1 =

= (gTg)1− (gTg)g×︸ ︷︷ ︸
−g×g×g×

+(gTg)g×g×︸ ︷︷ ︸
−g×g×g×g×

− (gTg)g×g×g×︸ ︷︷ ︸
−g×g×g×g×g×

+...

= 1+ ggT − g× − (1+ g×)−1 (49)
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Gibbs Vector

In the above, the following manipulation has been used

(gTg)g× = (−g×g× + ggT )g× = −g×g×g× + g gTg×︸ ︷︷ ︸
0

= −g×g×g× (50)
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Gibbs Vector

Thus, it holds
(1 + gTg)(1+ g×)−1 = 1+ ggT − g× (51)

Therefore we can derive that

(1 + gTg) (1+ g×)−1(1− g×)︸ ︷︷ ︸
C

= (1+ ggT − g×)(1− g×) (52)

= 1+ ggT − 2g× − g gTg×︸ ︷︷ ︸
0

+ g×g×︸ ︷︷ ︸
−gTg1+ggT

= (1− gTg)1+ 2ggT − 2g×

where by dividing both sides with (1 + gTg) the desired result for C is derived.
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Rotational Kinematics

We introduced the rotation between frame F2 and F1.

Orientation can change with time and thus we must introduce vehicle kinematics
equations.

We will introduce the concept of angular velocity, then acceleration in a rotating frame
and the expression for the range of change of the orientation parametrization to angular
velocity.
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Angular Velocity

Let frame F2 rotate wrt F1. The angular velocity of F2 wrt F1 is denoted by ω21. The
angular velocity of F1 wrt F2 is ω12 = −ω21.

Figure: Angular velocity notation.
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Angular Velocity

rate of rotation: The magnitude of ω21, ∥ω21∥ =
√

(ω21 · ω21).
instantaneous axis of rotation: The direction of ω21 (i.e., the unit vector in the direction of
ω21, ∥ω21∥−1ω21).
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Angular Velocity

rate of rotation: The magnitude of ω21, ∥ω21∥ =
√

(ω21 · ω21).
instantaneous axis of rotation: The direction of ω21 (i.e., the unit vector in the direction of
ω21, ∥ω21∥−1ω21).

Observers in F2 and F1 do not see the same motion because of their own relative motions.
Let us denote the vector time derivative as seen in F1 by (·)• and that seen in F2 by (·)◦.
Therefore

F•
1 = 0, F◦

2 = 0 (53)
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Angular Velocity

It can be shown that [
2•1 2•2 2•3

]
= ω21 ×

[
21 22 23

]
(54)

or
F•T

2 = ω21FT
2 (55)

we want to determine the time derivative of an arbitrary vector expressed in both frames

r = FT
1 r1 = FT

2 r2 (56)

Thus, the time derivative as seen in F1 is

r• = F•T
1 r1 + FT

1 ṙ1 = FT
1 ṙ1 (57)

And similarly,
r◦ = FT

2 ṙ2 (58)
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Angular Velocity

The time derivative as seen in F1 expressed in F2 takes the form

r• = FT
2 ṙ2 + F•T

2 r2 = FT
2 ṙ2 + ω21 × FT

2 r2 = r◦ + ω21 × r (59)

which is true for any vector r .
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Angular Velocity

The time derivative as seen in F1 expressed in F2 takes the form

r• = FT
2 ṙ2 + F•T

2 r2 = FT
2 ṙ2 + ω21 × FT

2 r2 = r◦ + ω21 × r (60)

which is true for any vector r .
The most important application occurs when

r denotes position

F1 is a nonrotating inertial frame

F2 is a frame that rotates with the vehicle’s body

Then, Eq. (60) expresses the velocity in the inertial frame in terms of the motion in the
rotating frame.
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Angular Velocity

Now let us express the angular velocity in F2

ω21 = FT
2 ω

21
2 (61)

Thus
r• = FT

1 ṙ1 = FT
2 ṙ2 + ω21 × r = FT

2 ṙ2 + FT
2 ω21

2
×
r2 = FT

2 (ṙ2 + ω21
2

×
r2) (62)

and if we want to express the inertial time derivative (seen in F1) in F1, then we can use
the rotation matrix C12

ṙ1 = C12(ṙ2 + ω21
2

×
r2) (63)
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Acceleration

Let us denote the velocity by
υ = r• = r◦ + ω21 × r (64)

The acceleration can be derived by applying Eq. (60) to υ

r•• = υ◦ + ω21 × υ = r◦◦ + 2ω21 × r◦ + ω◦
21 × r + ω21 × (ω21 × r) (65)
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Acceleration

To write in equivalent matrix form, we replace

r•• = FT
1 r̈1

r◦◦ = FT
2 r̈2

ω◦
21 = FT

2 ω̇21
2

and then we can write

r̈1 = C12

[
r̈2 + 2ω21

2
×
ṙ2 + ω̇21

2
×r2 + ω21

2
×
ω21

2
×
r2
]

(66)

where

r◦◦ : acceleration wrt F2

2ω21 × r◦ : Coriolis acceleration

ω◦
21 × r : angular acceleration

ω21 × (ω21 × r) : centripetal acceleration
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Angular Velocity Given Rotation Matrix

Considering the relation between two reference frames between the associated rotation matrix

FT
1 = FT

2 C21 (67)

and taking the derivative of both sides as seen in F1

0 = F•T
2 C21 + FT

2 Ċ21 (68)
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Angular Velocity Given Rotation Matrix

Considering the relation between two reference frames between the associated rotation matrix

FT
1 = FT

2 C21 (69)

and taking the derivative of both sides as seen in F1

0 = F•T
2 C21 + FT

2 Ċ21 (70)

After algebraic derivations we can derive the Poisson’s equation

Ċ21 = −ω21
2

×
C21 (71)

which allows to determine the rotation matrix relating F1 to F2 given the angular velocity as
measured in F2.
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Angular Velocity Given Rotation Matrix

We can also re-arrange to obtain an explicit function ω21
2

ω21
2

×
= −Ċ21C

−1
21 = −Ċ21C

T
21 (72)

which allows to calculate the angular velocity when the rotation matrix is known as a function
of time.
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Euler Angles

Considering the 1-2-3 Euler angle sequence and its associated rotation matrix, then Eq. (72)
takes the form

ω21
2

×
= −C3C2Ċ1C

T
1 C

T
2 C

T
3 − C3Ċ2C

T
2 C

T
3 − Ċ3C

T
3 (73)

then, using
−ĊiC

T
i = 1×i θ̇i (74)

for each principal axis rotation (where 1i is column i of 1), and the identity

(Ci r)
× ≡ Ci r

×CT
i (75)

it can be shown that

ω21
2

×
=

(
C3C211θ̇1

)×
+
(
C312θ̇2

)×
+
(
13θ̇3

)×
(76)
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Euler Angles

The above equation (repeated here)

ω21
2

×
=

(
C3C211θ̇1

)×
+
(
C312θ̇2

)×
+
(
13θ̇3

)×

can be simplified to

ω21
2 =

[
C3(θ3)C2(θ2)11 C3(θ3)12 13

]︸ ︷︷ ︸
S(θ2,θ3)

θ̇1θ̇2
θ̇3


︸ ︷︷ ︸

θ̇

= S(θ2, θ3)θ̇ (77)

which gives the angular velocity in terms of the Euler angles and the Euler rates, θ̇.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 65 / 105



Euler Angles

In scalar detail, we have

S(θ2, θ3) =

 cos θ2 cos θ3 sin θ3 0
− cos θ2 sin θ3 cos θ3 0

sin θ2 0 1

 (78)
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Euler Angles

In scalar detail, we have

S(θ2, θ3) =

 cos θ2 cos θ3 sin θ3 0
− cos θ2 sin θ3 cos θ3 0

sin θ2 0 1

 (79)

and by inverting S we derive a system of differential equations that can be integrated to
calculate the Euler angles, assuming ω21

2 is known

θ̇ = S−1(θ2, θ3)ω
21
2 =

 sec θ2 cos θ3 − sec θ2 sin θ3 0
sin θ3 cos θ3 0

− tan θ2 cos θ3 tan θ2 sin θ3 1

ω21
2 (80)

where it is noted that at θ2 = π/2, then S−1 does not exict. This is the singularity associated
with the 1-2-3 sequence.
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Euler Angles

The above developments hold true for any Euler sequence. If we pick an α-β-γ set

C21(θ1, θ2, θ3) = Cγ(θ3)Cβ(θ2)Cα(θ1) (81)

then
S(θ2, θ3) =

[
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

]
(82)

and S−1 does not exist at the singularities of S.
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Perturbing Rotations

The state of a rigid body involves both a trasnlation (three degrees of freedom) and a
rotation (three degrees of freedom).

Challenge: The degrees-of-freedom associated with rotations do not live in a vector
space rather they form the non-commutative group called SO(3).

The fact that rotations do not live in a vector space is fundamental when it comes to
linearizing motion and observation models involving rotations.

The approach this, the key is to consider what is happening on a small, infinitesimal, level.
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Some Key Identities

Euler’s rotation theorem allows to write a rotation matrix C in terms of a rotation about an
axis, a, through an angle ϕ

C = cosϕ1+ (1− cosϕ)aaT − sinϕa× (83)

Taking the partial derivative of C wrt ϕ allows to derive the first identity

∂C

∂ϕ
= − sinϕ1+ sinϕaaT − cosϕa×

= −a× cosϕ1+ (1− cosϕ)aaT − sinϕa×︸ ︷︷ ︸
C

(84)

≡ −a×C (85)
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Some Key Identities

An immediate application of this is that for any principal-axis rotation about axis α, we
have

∂Cα(θ)

∂θ
≡ −1×αCα(θ) (86)

where 1α is a column α of the identity matrix.
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Some Key Identities

Let us consider an α-β-γ Euler sequence

C(θ) = Cγ(θ3)Cβ(θ2)Cα(θ1), θ = (θ1, θ2, θ3) (87)

We select an arbitrary constant vector, v and apply Eq. (86)

∂(C(θ)v)

∂θ3
= −1×γ Cγ(θ3)Cβ(θ2)Cα(θ1)v = (C(θ)v)×1γ (88)

∂(C(θ)v)

∂θ2
= −Cγ(θ3)1

×
β Cβ(θ2)Cα(θ1)v = (C(θ)v)×Cγ(θ3)1β (89)

∂(C(θ)v)

∂θ1
= −Cγ(θ3)Cβ(θ2)1

×
αCα(θ1)v = (C(θ)v)×Cγ(θ3)Cβ(θ2)1α (90)

where we have utilized two known identities

r×s ≡ −s×r (91)

(Rs)× ≡ s×RT (92)

for any vectors r, s and any rotation matrix R.
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Some Key Identities

Combining the results of Eq. (88-90) it follows

∂(C(θ)v)

∂θ
=

[
∂(C(θ)v
∂θ1

∂(C(θ)v
∂θ2

∂(C(θ)v
∂θ3

]
= (C(θ)v)×

[
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

]︸ ︷︷ ︸
S(θ2,θ3)

(93)

and thus the second identity we can state is

∂(C(θ)v)

∂θ
≡ (C(θ)v)× S(θ2, θ3) (94)

which we note is true regardless of the choice o the Euler set.
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Perturbing a Rotation Matrix

Let us consider how to linearize a rotation. For a function, f(x), perturbing x slightly from
its nominal value, x̄, by an amount δx will result in a change in the function. We express this
using a Taylor-series

f(x̄+ δx) = f(x̄) +
f(x)

∂x

∣∣∣∣
x̄

δx+ (higher order terms) (95)

and so if δx is small, a “first-order” approximation is

f(x̄+ δx) ≈ f(x̄) +
∂f(x)

∂x

∣∣∣∣
x̄

δx (96)
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Perturbing a Rotation Matrix

This presupposes that δx is not constrained in any way.

The problem with carrying out the same process with rotations is that most of the
representations involve constraints and thus are not easily perturbed (without enforcing
the constraint).

The notable exceptions are the Euler angle sets. These contain exactly three parameters,
and thus each can be varied independently.
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Perturbing a Rotation Matrix

Consider perturbing C(θ)v with respect to Euler angles θ, where v is an arbitrary
constant vector. Letting θ̄ = (θ̄1, θ̄2, θ̄3) and δθ = (δθ1, δθ2, δθ3), then applying a first-order
Taylor-series approximation:

C(θ̄) + δθ)v ≈ C(θ̄)v +
∂(C(θ)v)

∂θ

∣∣∣∣
θ̄

δθ

= C(θ̄)v +
(
(C(θ)v)×S(θ2, θ3)

)∣∣
θ̄
δθ

= C(θ̄)v + (C(θ̄)v)×S(θ̄2, θ̄3)δθ

= C(θ̄)v − (S(θ̄2, θ̄3)δθ)
×(C(θ̄)v)

=
(
1− (S(θ̄2, θ̄3)δθ)

×)C(θ̄)v (97)

where Eq. (94) (second identity) has been used to go the second line.
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Perturbing a Rotation Matrix

As v is arbitrary, we can drop it from both sides and write

C(θ̄ + δθ) ≈
(
1− S(θ̄2, θ̄3)δθ)

×)︸ ︷︷ ︸
infiniesimal rot. mat.

C(θ̄) (98)

which we see is the product of an infinitesimal rotation matrix and the unperturbed
rotation matrix, C(θ̄).
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Perturbing a Rotation Matrix

As v is arbitrary, we can drop it from both sides and write

C(θ̄ + δθ) ≈
(
1− S(θ̄2, θ̄3)δθ)

×)︸ ︷︷ ︸
infiniesimal rot. mat.

C(θ̄) (99)

which we see is the product of an infinitesimal rotation matrix and the unperturbed
rotation matrix, C(θ̄). Notationally, we can simply write

C(θ̄ + δθ) ≈ (1− δϕ×)C(θ̄), δϕ = S(θ̄2, θ̄3)δθ (100)

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 78 / 105



Perturbing a Rotation Matrix

Eq. (99) - repeated for clarity

C(θ̄ + δθ) ≈
(
1− S(θ̄2, θ̄3)δθ)

×)︸ ︷︷ ︸
infiniesimal rot. mat.

C(θ̄)

is extremely important as it tells us exactly how to perturb a rotation matrix, in terms of
perturbations to its Euler angles, when it appears inside any function.
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Example

Let a scalar function, J, be given by

J(θ) = uTC(θ)v (101)

where u, v arbitrary vectors. Applying the abovementioned approach to linearizing rotations,
we get

J(θ̄ + δθ) ≈ uT (1− δϕ×)C(θ̄v = ︸︷︷︸
J(θ̄)

+uT (C(θ̄v)×δϕ︸ ︷︷ ︸
δJ(δϕ)

(102)

so that the linearized funtion is

δJ(δθ) =
(
uT (C(θ̄)v)×S(θ̄2, θ̄3)

)
︸ ︷︷ ︸

constant

δθ (103)

where it is shown that the factor in front of δθ is indeed constant. In fact, it is ∂J
∂θ

∣∣
θ̄
, the

Jacobian of J wrt θ.
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Poses

Remember
pose = [position, orientation] (104)

We now want to introduce the effect of translation and overall deal with combined pose
transformations. We consider a point, P, between a moving (in translation and rotation)
vehicle frame, and a stationary frame.

Figure: Pose estimation often concerns with transforming the coordinates of a point, P, between a
moving vehicle frame, and a stationary frame.Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 82 / 105



Poses

The vectors in the figure can be related

rpi = rpv + r vi (105)

Writing the relationship in the stationary frame Fi

rpii = rpvi + rvii (106)

Figure: Pose estimation often concerns with transforming the coordinates of a point, P, between a
moving vehicle frame, and a stationary frame.
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Poses

If the point P is attached to the vehicle, we may know its coordinates in Fv whic his rotated
wrt Fi . Letting Civ represent this rotation we get

rpii = Civ r
pv
v + rvii (107)

which tells how to convert the coordinates of P in Fv to its coorindates in Fi given the
translation rvii and rotation Civ between the two frams. We refer to the pose as

{rvii ,Civ} (108)
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Transformation Matrices

We can write the relation for the pose in Eq. (107) using the 4× 4 transformation matrix
Tiv as [

rpii
1

]
=

[
Civ rvii
0T 1

]
︸ ︷︷ ︸

Tiv

[
rpvv
1

]
(109)

To use the transformation matrix, we augment the coordinates of a point with a 1 and arrive
to the homogeneous point representation 

x
y
z
1

 (110)
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Transformation Matrices

Notably, homogeneous point representations can be multiplied by a scale factor, s as
sx
sy
sz
s

 (111)

where to recover the original (x , y , z) coordinates by a simple division of the first three rows
with the fourth. This allows to represent points arbitrarily far aware from the origin - as s
aproaches 0.
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Transformation Matrices

To transform the coordinates back the other way, we require the inverse of a transformation
matrix [

rpvv
1

]
= T−1

iv

[
rpii
1

]
(112)

where

T−1
iv =

[
Civ rvii
0T 1

]−1

=

[
CT
iv −CT

iv r
vi
i

0T 1

]
=

[
Cvi −rviv
0T 1

]
=

[
Cvi rviv
0T 1

]
= Tvi (113)

where rivv = −rviv (flipping the direction of the vector).
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Transformation Matrices

We can also compound transformation matrices

Tiv = TiaTabTbv (114)

which makes it easy to chain an arbitrary number of pose changes together

FiTiv←−Fv = FiTia←−FaTab←−−FbTbv←−−Fv (115)

for example, each frame could represent the pose of a vehicle at different time stamps.
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Robotic Conventions

Domain-specific subtleties that we must be aware. Let’s consider the case of a simple planar
robot.

Figure: Simple planar example with a mobile vehicle whose state is given by position, (x , y), and
orientation, θvi . It is standard for “forward” to be the 1-axis of the vehicle frame and “left” to be the
2-axis. The 3-axis comes out of the plane.
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Robotic Conventions

The position of the vehicle can be written in a straightforward manner as

rvii =

xy
0

 (116)

The rotation of Fv wrt Fi is a principal-axis rotation about the 3-axis, through an angle θvi .
Following the previous convention, the angle of rotation is positive (according to the
right-hand rule). Thus

Cvi = C3(θvi ) =

 cos θvi sin θvi 0
− sin θvi cos θvi 0

0 0 1

 (117)
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Robotic Conventions

It makes sense to use θvi for orientation. However, as discussed the rotation matrix we really
care about when constructing the pose is Civ = CT

vi = C3(−θvi ) = C3(θiv ). We note that
θiv = −θvi and we do not use θiv as the heading as that would be confusing. We then write
the transformation matrix

Tiv =

[
Civ rvii
0T 1

]
=


cos θvi − sin θvi 0 x
sin θvi cos θvi 0 y
0 0 1 0
0 0 0 1

 (118)
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Robotic Conventions

In general, even when the axis of rotation, a, is not i3 we can write

Civ = CT
vi =

(
cos θvi1+ (1− cos θvi )aa

T − sin θvia
×
)T

= cos θvi1+(1−cos θvi )aaT+sin θvia
×

(119)

whee we note the change in sign of the third term due as a×
T
= −a× (skew-symmetric

property).
⇒ we can use θvi instead of θiv to construct Civ .
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Robotic Conventions

Please note as you study papers etc that confusion arises as often people

drop indices

C = cos θ1+ (1− cos θ)aaT + sin θa× (120)

or also

T =

[
C r
0T 1

]
(121)

replace the operator × with the ∧ notation
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Sensor Models

We can introduce explicit models of different sensors. Consider the figure

Figure: Reference frames for a moving vehicle with sensor on-board that observes a point, P, in the
world.
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Sensor Models

Inertial frame Fi

Vehicle frame Fv

Sensor frame Fs

The pose change between sensor frame and the vehicle frame Tsv is called the extrinsic
sensor parameters and is typically fixed.
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Inertial Measurement Unit

An IMU involves

3 orthogonal linear accelerometers

3 orthogonal rate gyroscopes

All quantities are measured in a sneosr frame Fs typically non-colocated with F .
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Inertial Measurement Unit

To model an IMU, we assume that the state of the vehicle can be captured by the quantities

rvii ,Cvi︸ ︷︷ ︸
pose

, ωvi
v︸︷︷︸

angular velocity

, ωvi
v︸︷︷︸

angular acceleration

(122)

and that we know the fixed pose between the vehicle and sensor frames as given by rsvv and
Csv .
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Inertial Measurement Unit

Figure: An IMU involves three linear accelerometers and three gyroscopes that measure quantities in
the sensor frame, which is typically not coincident with he vehicle frame.
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Inertial Measurement Unit

For the gyro sensor model we consider the measured angular rates, ω which are the body rates
of the vehicle, expressed in the sensor frame

ω = Csvω
vi
v (123)

which exploits that the sensor frame is fixed wrt the vehicle frame and thus Ċsv = 0.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 100 / 105



Inertial Measurement Unit

For the accelerometer, as they typically use test masses as part of the measurement principle,
the resulting observations, a, can be written as

a = Csi (r̈
si
i − gi ) (124)

where r̈sii is the inertial acceleration of the sensor point, S , and gi is gravity.

In free fall, the measurement is a = 0

At rest, the accelerometer measures gravity (in the sensor frame).
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Inertial Measurement Unit

The accelerometer model is not expressed in terms of the vehicle state quantities and must
thus be modified to account for the offset between the sensor and vehicle frames. We note that

rsii = rvii + CT
vi r

sv
v (125)

Differentiating twice we can get that

r̈sii = r̈vii + CT
vi ω̇

vi
v
∧rsvv + CT

viω
vi
v
∧
ωvi

v
∧
rsvv (126)

with the right-hand side now being in terms of state quantities and known calibration
parameters.
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Inertial Measurement Unit

Inserting the above to Eq. (124) gives the final model for the accelerometers

a = Csv

(
Cvi (r̈

vi
i − gi ) + ωvi

v
∧
rsvv + ωvi

v
∧
ωvi

v
∧
rsvv

)
(127)
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Inertial Measurement Unit

To summarize we can stack the accelerometer and gyro models into the following IMU sensor
model

[
a
ω

]
= s(rvii ,Cvi ,ω

vi
v , ω̇

vi
v )

=

[
Csv

(
Cvi (r̈

vi
i − gi ) + ω̇vi

v
∧rsvv + ωvi

v
∧
ωvi

v
∧
rsvv

)
Csvω

vi
v

]
(128)

where Csv , rsvv are the known pose change between the vehicle and sensor frames, and gi is
gravity in the inertial frame.
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Thank you

Q&A

Assignments

Other matters
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