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Introduction

Topics to be covered

Batch, discrete-time estimation

Recursive approaches and their relation to batch estimation

Estimation for continuous-time motion models and relevance to discrete-time results and
Gaussian process regression.

Classic results for linear models and Gaussian random variables, including the Kalman
Filter

Main reference: Barfoot, T.D., 2017. State estimation for robotics. Cambridge University
Press.
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Outline

We will introduce the problem setup and the methods used for its solution.
We shall explicitly discuss Maximum A Posteriori (MAP) and Bayesian Inference methods.
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Problem Setup

We define the following motion and observation models

motion model: xk = Ak−1xk−1 + vk +wk , k = 1...K (1)

observation model: yk = Ckxk + nk , k = 0...K (2)

where k is the discrete-time index and:

xk ∈ RN : system state (random variable)

x0 ∈ RN ∼ N (x̌0, P̌0): initial state (random variable)

vk ∈ RN : input (deterministic variable)

wkRN ∼ N (0,Qk): process noise (random variable)

yk ∈ RM : measurement (random variable)

nk ∈ RM ∼ N (0,Rk): measurement noise (random variable)

The noise variables and initial state state are assumed to be uncorrelated with one another and
with themselves at different timesteps. Ak ∈ RN×N is the transition matrix, Ck ∈ RM×N is
the observation matrix.
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Problem Setup

We will base our estimate, x̂k , on

Initial state knowledge, x̌0 and associated covariance matrix, P̌0. Sometimes we do not
have this information and must practically overcome this issue.

Inputs, vk which are often the output of a controller and known. We also have the
associated process noise covariance Qk .

Measurements, yk,meas , which are realizations of the associated random variables, yk , and
the associated covariance matrix, Rk .

State Estimation Problem

The problem of state estimation is to derive an estimate, x̂k , of the true state of a system, at
one or more timesteps, k, given knowledge of the initial state, x̌0, a sequence of
measurements, y0:K ,meas , a sequence of inputs, v1:K , as well as knowledge of the system’s
motion and observation models.
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Problem Setup

To show the relationship between various concepts in state estimation, we shall set up the
batch Linear-Gaussian (LG) estimation problem using two different paradigms, namely

1 Bayesian Inference; we update a prior density over states (based on the initial state
knowledge, inputs, and motion model) with our measurements, to produce a posterior
(Gaussian) density over states.

2 Maximum A Posteriori (MAP); we employ optimization to find the most likely posterior
state given the information we have (initial state knowledge, measurements, inputs).

LG Problem: Bayesian inference and MAP arrive at the same result

Although these approaches are different in nature, it can be shown that we arrive at the exact
same answer for the LG problem because the full Bayesian posterior is exactly Gaussian ⇒ the
optimization approach will find the maximum (i.e., mode) of a Gaussian and this is the same
as the mean.

When we move to nonlinear, non-Gaussian systems, the mean and mode of the posterior are
no longer the same and the two methods will arrive to different results.
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Maximum A Posteriori (MAP)

In batch estimation, our goal is to solve the following MAP problem:

x̂ = argmax
x

p(x|v, y) (3)

i.e., we want to find the best single estimate for the state of the system at all timesteps, x̂,
given the prior information, v, and measurements, y (dropped meas from ymeas for simplicity).

x = x0:K = (x0, ..., xK ), v = (x̌0, v1:K ) = (x̌0, v1, ..., vK ), y = y0:K = (y0, ..., yK ) (4)

where the timestemp range may be dropped for convenience of notation (when the range is the

largest possible for that variable).
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Maximum A Posteriori (MAP)

We begin by re-writting the MAP estimate using Bayes’ rule

x̂ = argmax
x

p(x|v, y) = argmax
x

p(y|x, v)p(x|v)
p(y|v)

= argmax
x

p(y|x)p(x|v) (5)

where we drop the denominator because it is independent of x and we also drop v in p(y|x, v)
since it does not affect y in our system if x is known.

Note that an assumption we make is that all the noise variables, wk and nk for k = 0...K , are
uncorrelated. This allows to use Bayes’ rule to factor p(y|x) as

p(y|x) =
K∏

k=0

p(yk |xk) (6)
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Maximum A Posteriori (MAP)

Furthermore, Bayes’ rule allows us to factor p(x|v) as

p(x|v) = p(x0|x̌0)
K∏

k=1

p(xk |xk−1, vk) (7)

In this linear system the component (Gaussian) densities are given by

p(x0|x̌0) =
1√

(2π)N det P̌0

exp

(
−1

2
(x0 − x̌0)

T P̌−1
0 (x0 − x̌0)

)
(8)

p(xk |xk−1, vk) =
1√

(2π)N detQk

exp

(
−1

2
(xk − Ak−1xk−1 − vk)

TQ−1
k (xk − Ak−1xk−1 − vk)

)
(9)

p(yk |xk) =
1√

(2π)M detRk

exp

(
−1

2
(yk − Ckxk)

TR−1
k (yk − Ckxk)

)
(10)

Where P̌0,Qk ,Rk are positive-definite by assumption and thus invertible.
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Maximum A Posteriori (MAP)

We take the logarithm on both sides

ln(p(y|x)p(x|v)) = ln p(x0|x̌0) +
K∑

k=1

ln p(xk |xk−1, vk) +
K∑

k=0

ln p(yk |xk) (11)

where

ln p(x0|x̌0) = −
1

2
(x0 − x̌0)

T P̌−1
0 (x0 − x̌0)−

1

2

(
(2π)N det P̌0

)
︸ ︷︷ ︸
independent of x

(12)

ln p(xk |xk−1, vk ) = −
1

2
(xk − Ak−1xk−1 − vk )

TQ−1
k (xk − Ak−1xk−1 − vk )−

1

2
ln
(
(2π)N detQk

)
︸ ︷︷ ︸

independent of x

(13)

ln p(yk |xk ) = −
1

2
(yk − Ckxk )

TR−1
k (yk − Ckxk )−

1

2
ln
(
(2π)M detRk

)
︸ ︷︷ ︸

independent of x

(14)
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Maximum A Posteriori (MAP)

Noticing that there are terms that do not depend on x we define

Jυ,k(x) =

{
1
2 (x0 − x̌0)T P̌

−1
0 (x0 − x̌0), k = 0

1
2 (xk − Ak−1xk−1 − vk)TQ

−1
k (xk − Ak−1xk−1 − vk), k = 1...K

(15)

Jy ,k(x) =
1

2
(yk − Ckxk)

TR−1
k (yk − Ckxk), k = 0...K (16)

which are all squared Mahalanobis distances.

We then define an overall overall objective function, J(x), that we will seek to minimize wrt
the design parameter, x

J(x) =
K∑

k=0

(Jυ,k(x) + Jy ,k(x)) (17)
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Maximum A Posteriori (MAP)

We seek to solve the following problem

x̂ = argmin
x

J(x) (18)

which results in the same solution for the best estimate, x̂, as Eq. (3). In other words, we are
still finding the optimal estimate that maximizes the likelihood of the state given the data.
This is an unconstrained optimization problem.

We stack all the known data into a lifted column, z and recall that x is also a tall column
consisting of all the states

z =



x̌0
v1
...
vK
y0
y1
...
yK


, x =

x0
...
xK

 (19)
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Maximum A Posteriori (MAP)

We then define the block-matrix quantities

H =



1
−A0 1

. . .
. . .

−AK−1 1
C0

C1

. . .

CK


, W =



P̌0

Q1

. . .

QK

R0

R1

. . .

RK


(20)

where only non-zero blocks are shown.
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Maximum A Posteriori (MAP)

Under these definitions, we find

J(x) =
1

2
(z−Hx)TW−1(z−Hx) (21)

which is exactly quadratic in x. We also have

p(z|x) = η exp

(
−1

2
(z−Hx)TW−1(z−Hx)

)
(22)

where η is a normalization constant.

Since J(x) is a paraboloid, we can find its minimum in closed form by setting the partial
derivative wrt x to zero

∂J(x)
∂xT

∣∣∣
x̂
= −HTW−1(z−Hx̂) = 0 ⇒ (HTW−1H)x̂ = HTW−1z (23)
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Maximum A Posteriori (MAP)

The solution to Eq. (23) (repeated here for convenience), x̂, is the classic batch least-squares
solution aid it is equivalent to the fixed-internal smoother.

∂J(x)
∂xT

∣∣∣
x̂
= −HTW−1(z−Hx̂) = 0 ⇒ (HTW−1H)x̂ = HTW−1z

Pseudoinverse and sparse-equation solvers

The batch least-squares solution employes the pseudoinverse. Computationally, to solve this
system of linear equations, we would never actually invert HTW−1H. This matrix presents a
special block-tridiagonal structure and thus a sparse-equation solver can be exploited.
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Bayesian Inference

Having looked at the optimization approach to batch LG estimation, we now look at the full
Bayesian posterior, p(x|v, y) and not only the maximum. This requires that we begin with a
prior density over the states, which we will then update based on the measurements.
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Bayesian Inference

Having looked at the optimization approach to batch LG estimation, we now look at the full
Bayesian posterior, p(x|v, y) and not only the maximum. This requires that we begin with a
prior density over the states, which we will then update based on the measurements.

A prior can be built using knowledge of the initial state, as well as the inputs to the system:
p(x|v). We will use just the motion model to derive this prior

xk = Ak−1xk−1 + vk +wk (24)
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Bayesian Inference

In lifted matrix form, we write

x = A(v +w) (25)

where w is the lifted form of the initial state and process noise, and

A =



1
A0 1

A1A0 A1 1
...

...
...

. . .

AK−2 · · ·A0 AK−2 · · ·A1 AK−2 · · ·A2 · · · 1
AK−1 · · ·A0 AK−1 · · ·A1 AK−1 · · ·A2 · · · AK−1 1


(26)

is the lifted transition matrix and presents lower-triangular structure.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 21 / 87



Bayesian Inference

The lifted mean and covariance take the form

lifted mean: x̌ = E [x] = E [A(v +w)] = Av (27)

lifted covariance: P̌ = E [(x− E [x])(x− E [x])T ] = AQAT (28)

where Q = E [wwT ] = diag(P̌,Q1, ...,QK ). The prior can then be expressed as

Prior: p(x|v) = N (x̌, P̌) = N (Av,AQAT ) (29)

Turning to the measurements, we write for the measurement model

yk = Ckxk + nk (30)

and accordingly in lifted form

y = Cx+ n, C = diag(C0,C1, ...,CK ) (31)

where n is the lifted form of the measurement noise.
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Bayesian Inference

The joint density of the prior lifted state and the measurements can then be written as

p(x, y|v) = N
([

x̌
Cx̌

]
,

[
P̌ P̌CT

CP̌ CP̌CT + R

])
(32)

where R = E [nnT ] = diag(R0,R1, ...,RK ). This can be factored based on
p(x, y|v) = p(x|v, y)p(y, v). We care for the first factor, the Bayesian posterior, which we
write

p(x|v, y) = N
(
x̌+ P̌CT (CP̌CT + R)−1(y − Cx̌), P̌− P̌(CP̌CT + R)−1CP̌

)
(33)

Using the SMW identities we can rewrite for the Bayesian solution

p(x|v, y) = N

(P̌−1 + CTR−1C)−1(P̌−1x̌+ CTR−1y)︸ ︷︷ ︸
x̂, mean

, (P̌−1 + CTR−1C)−1︸ ︷︷ ︸
P̂, covariance

 (34)
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Bayesian Inference

To see the connection to the optimization approach we rearrange the mean expression to
arrive at a linear system for x̂

(P̌−1 + CTR−1C)︸ ︷︷ ︸
P̂−1

x̂ = P̌−1x̌+ CTR−1y (35)

and see that the inverse covariance appears on the left-hand side. Substituting in x̌ = Av and
P̌−1 = (AQAT )−1 = A−TQ−1A−1 we rewrite as

(A−TQ−1A−1 + CTR−1C)︸ ︷︷ ︸
P̂−1

x̂ = A−TQ−1v + CTR−1y (36)
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Bayesian Inference

In turn, we see that this requires computing A−1 which however has a neat lower-triangular
and very sparse structure

A−1 =



1
−A0 1

−A1 1

−A2

. . .

. . . 1
−AK−1 1


(37)

If we define

z =

[
v
y

]
, H =

[
A−1

C

]
, W =

[
Q

R

]
(38)

we then can rewrite our system of equations as

(HTW−1H)x̂ = HTW−1z (39)

which is identical to the optimization-based solution discussed earlier.
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Existence, Uniqueness, and Observability

Most LG estimation results can be viewed as a special case of Eq. (39). Examining the
equation it holds that x̂ will exist and be a unique solution if and only if HTW−1H is
invertible. Then

x̂ = (HTW−1H)−1HTW−1z (40)

For HTW−1H to be invertible it must hold that rank(HTW−1H) = N(K + 1) because
dimx = N(K + 1). Since W−1 is real symmetric positive definite, the uniqueness requirement
becomes

rank(HTH) = rank(HT ) = N(K + 1) (41)

or in other words, we need N(K + 1) linearly independent rows (or columns) in HT .

We can have two cases for our problem, namely to (i) have a good prior x̌0, or (ii) to note
have such knowledge of the initial state.
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Existence, Uniqueness, and Observability

For the case of knowledge of the initial state, we write out HT and our rank test takes the form

rank(HT ) = rank


1 −AT

0 CT
0

1 −AT
1 CT

1

1
. . . CT

2

. . . −AT
K−1

. . .

1 CT
K

 (42)

which is row-echelon form. This entails that the matrix is full rank, N(K + 1), since all the
block-rows are linearly indepdendent. Accordingly, we always have a unique solution for x̂ as
long as

P̂0 ≻ 0, Qk ≻ 0 (43)

where ≻ means that the matrix is positive-definite and thus invertible.
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Existence, Uniqueness, and Observability

Row-echelon form

A matrix being in row-echelon form means that Gaussian elimination has operated on the
rows, and column-echelon form means that Gaussian elimination has operated on the columns.
A matrix is in column-echelon form if its transpose is in row-echelon form. The test for a
matrix being in row-echelon form is

All rows consisting of only zeroes are at the bottom.

The leading coefficient (or pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

The additional test rule of the leading coefficient being 1 may be added.
The conditions imply that all entries in a column below a leading coefficient are zeros.
The row-echelon form of a matrix is - generally - not unique.
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Existence, Uniqueness, and Observability

Reduced row-echelon form

A matrix is in reduced row-echelon form if it satisfies the following conditions

It is in row-echelon form.

The leading entry in each nonzero is a 1

Each column containing a leading 1 has zeros in all its other entries.

The reduced row-echelon form of a matrix can be computed via Gauss-Jordan elimination.
The reduced row-echelon form of a matrix is unique and does not depend on the algorithm
used to compute it.
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Existence, Uniqueness, and Observability

For the case of not having any knowledge of the initial state, it can be shown that the
requirement for solution uniqueness is that the matrix

O =


C
CA
...

CA(N−1)

 (44)

has rank N, i.e.,
rankO = N (45)

Which in turn is the same requirement as that for observability in LTI systems. Thus, we can
see the connection between observability and invertibility of HTW−1H.

Overall the conditions for solution existence and uniqueness in Eq. (39) are

Qk ≻ 0, Rk ≻ 0, rankO = N (46)

Note: These are sufficient but not necessary conditions.
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MAP Covariance

One important question is how confident are we for x̂ in Eq. (39). It turns out that we can
re-interpret the least-squares solution as a Gaussian estimate for x

(HTW−1H)︸ ︷︷ ︸
inverse

covariance

x̂︸︷︷︸
mean

= HTW−1z︸ ︷︷ ︸
information

vector

(47)

where the right-hand side is referred to as the information vector. To understand further, let
us employ Bayes’ rule to rewrite Eq. (22) as

p(x|z) = β exp

(
−1

2
(Hx− z)TW−1(Hx− z)

)
(48)

where β is a new normalization constant. We then substitute Eq. (39) and find that

p(x|x̂) = κ exp

(
−1

2
(x− x̂)T (HTW−1H)(x− x̂)

)
(49)

where κ a new normalization constant.
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MAP Covariance

Accordingly, we see that N (x̂, P̂) is a Gaussian estimator for x whose mean is the optimization
solution and whose covariance is P̂ = (HTW−1H)−1.
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Recursive Discrete-Time Smoothing

The batch solution is appealing in that it is easy to understand, yet brute-force solving is
not realistic for many situations.

Since the inverse covariance matrix on the left side is sparse, we can solve the system of
equations in an efficient manner employing a forward recursion followed by a backward
recursion.

When the equations are solved this manner, the method is referred to as a fixed-interval
smoother.

Smoothers implement efficiently the full batch solution, with no approximation.

We shall discuss the Cholesky smoother and the Rauch-Tung-Striebel smoother.
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Exploiting Sparsity in the Batch Solution

Consider
(HTW−1H)x̂ = HTW−1z

The left hand side of Eq. (39) (repeated above for convenience), HTW−1H, is block-tridiagonal
(under our chronological variable ordering for x)

⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆ ⋆
. . .

. . .
. . .

⋆ ⋆ ⋆
⋆ ⋆


(50)

where ⋆ indicates a non-zero block. Importantly, there exist solvers that can exploit this sparse
structure and thus solve for x̂ efficiently.
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Exploiting Sparsity in the Batch Solution

Such batch equations can be solved through a sparse Cholesky decomposition followed by
forward and backward passes. We can efficiently factor HTW−1H into

HTW−1H = LLT (51)

where L is called the Cholesky factor and is a block-lower-triangular matrix with form

L =



⋆
⋆ ⋆

⋆ ⋆
. . .

. . .

. . .
. . .

⋆ ⋆


(52)

and the decomposition can be computed in O(N(K + 1)) time.
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Exploiting Sparsity in the Batch Solution

Next we solve for d in
Ld = HTW−1z (53)

This is called the forward pass and is done again in O(N(K + 1)) through forward
substitution owing to the sparse lower-triangular form of L.

Finally, we solve for x̂ in
LT x̂ = d (54)

This is called the backward pass and is done again in O(N(K + 1)) through backward
substitution owing to the sparse upper-triangular form of LT .

Overall, the batch equations can be solved in computational time that scales linearly with the
size of the state.
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Exploiting Sparsity in the Batch Solution

Cholesky Decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of
the form

A = LL⋆ (55)

where L is a lower-diagonal matrix with ral and positive diagonal entries, and L⋆ is its
conjugate transpose. Every Hermitian positive-definite matrix (and thus also every real-valued
symmetric positive-definite matrix) has a unique Cholesky decomposition.

When A is a real matrix (thus symmetric positive-definite), we write

A = LLT (56)

where L is a real lower-triangular matrix with positive diagonal entries.
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Cholesky Smoother

The Cholesky solution to the batch estimation problem, involving a set of forward-backward
recursions, is called the Cholesky smoother.

Let L which takes the form

L =



L0
L10 L1

L21 L2
. . .

. . .

LK−1,K−2 LK−1

LK ,K−1 LK


(57)
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Cholesky Smoother

Using the definitions of H,W, when we multiply out HTW−1H = LLT and compare at the
block level we have

L0L
T
0 = P̌−1

0 + CT
0 R−1

0 C0︸ ︷︷ ︸
I0

+AT
0 Q−1

1 A0 (58)

L10L
T
0 = −Q−1

1 A0 (59)

L1L
T
1 = −L10L

T
10 + Q−1

1 + CT
1 R−1

1 C1︸ ︷︷ ︸
I1

+AT
1 Q−1

2 A1 (60)

L21L
T
1 = −Q−1

2 A1 (61)

.

.

.

LK−1L
T
K−1 = −LK−1,K−2L

T
K−1,K−2 + Q−1

K−1 + CT
K−1R

−1
K−1CK−1︸ ︷︷ ︸

IK−1

+AT
K−1Q

−1
K AK−1 (62)

LK,K−1L
T
K−1 = −Q−1

K AK−1 (63)

LK LTK = −LK,K−1L
T
K,K−1 + Q−1

K + CT
KR−1

K CK︸ ︷︷ ︸
IK

(64)

where the underbraces allow us to define the Ik quantities.
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Cholesky Smoother

From the above equations, we can first solve for L0 by doing a small (dense) Cholesky
decomposition in the first equation, then substitute into the second to solve for L10 - and so
on up to LK thus confirming that we can work out all the blocks of L in a single forward pass
with O(N(K + 1)) complexity.

Next we solve Ld = HTW−1z for d, where

d =


d0
d1
...
dK

 (65)
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Cholesky Smoother

Multiplying out and comparing at the block level

L0d0 = P̌−1
0 x̌0 + CT

0 R
−1
0 y0︸ ︷︷ ︸

q0

−AT
0 Q

−1
1 v1 (66)

L1d1 = −L10d0 +Q−1
1 v1 + CT

1 R
−1
1 y1︸ ︷︷ ︸

q1

−AT
1 Q

−1
2 v2 (67)

...

LK−1dK−1 = −LK−1,K−2dK−2 +Q−1
K−1vK−1 + CT

K−1R
−1
K−1yK−1︸ ︷︷ ︸

qK−1

−AT
K−1Q

−1
K vK (68)

LKdK = −LK ,K−1dK−1 +Q−1
K vK + CT

KR
−1
K yK︸ ︷︷ ︸

qK

(69)

where the underbraces allow to define the qk terms.
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Cholesky Smoother

In the above equations we can solve for d0, then for d1 and so on until dK which confirms that
we can wok out all the blocks of d in a single forward pass in O(N(K + 1)).

The last step is to solve LT x̂ = d for x̂, where

x̂ =


x̂0
x̂1
...
x̂K

 (70)
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Cholesky Smoother

Multiplying out and comparing at the block level, we have

LTK x̂K = dK (71)

LTK−1x̂K−1 = −LTK ,K−1x̂K + dK−1 (72)

...

LT1 x̂1 = −LT21x̂2 + d1 (73)

LT0 x̂0 = −LT10x̂1 + d0 (74)

From these equations, we can solve for x̂K in the first equation, then substitute to derive x̂K−1

and so on up to x̂0. This confirms that we can work out all the blocks of x̂ in a single
backward pass in O(N(K + 1)) time.
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Cholesky Smoother

In terms of the Ik ,qk quantities, we can combine the two forward passes (solving for L,d) and
also write the backwards pass as

forward:
k = 1...K

Lk−1L
T
k−1 = Ik−1 + AT

k−1Q
−1
k Ak−1 (75)

Lk−1dk−1 = qk−1 − AT
k−1Q

−1
k vk (76)

Lk,k−1L
T
k−1 = −Q−1

k Ak−1 (77)

Ik = −Lk,k−1L
T
k,k−1 +Q−1

k + CT
k R

−1
k Ck (78)

qk = −Lk,k−1dk−1 +Q−1
k vk + CT

k R
−1
k yk (79)
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Cholesky Smoother

backward:
k = K ...1

LT
k−1x̂k−1 = −LT

k,k−1x̂k + dk−1 (80)

which are initialized with

I0 = P̌−1
0 + CT

0 R
−1
0 C0 (81)

q0 = P̌−1
p x̌0 + CT

0 R
−1
0 y0 (82)

x̂K = L−T
K dK (83)

The forward pass maps {qk−1, Ik−1} to the same pair at the next time, {qk , Ik}. The
backward pass maps x̂k to the same quantity at the previous timestep, x̂k−1. In the process,
we solve for all blocks of L,d. The only linear algebra operations required the Cholesky
smoother are Cholesky decomposition, multiplication, addition, and solving a linear system via
forward/backward substitution.
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Recursive Discrete-Time Filtering

The batch solution - and the corresponding smoother implementations - give us the best
solution but cannot be used online. For an online solution, the estimate of the current state
can only employ data up to the current timestep. The classical solution to this problem is the
Kalman Filter.

x̂k︷ ︸︸ ︷
x̌0, y0, v1, y1, v2, y2, ..., vk−1, yk−1, vk , yk , vk+1, yk+1, ..., vK , yK︸ ︷︷ ︸

x̂k,f

(84)
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Recursive Discrete-Time Filtering

To prepare things, we reorder some of the variables from the batch solution and redefine
z,H,W as

z =



x̌0
y0
v1
y1
v2
y2

.

.

.
vK
yK


, H =



1
C0
−A0 1

C1
−A1 1

C2

. . .
. . .

−AK−1 1
CK


, W =



P̌0
R0

Q1
R1

Q2
R2

. . .

QK
RK


(85)

where the partition lines now show divisions between timesteps. As this reordering does not
change the order in x, the matrix HTW−1H is still block-tridiagonal.
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Recursive Discrete-Time Filtering

Let us consider the factorization at the probability level. Considering the previous derivations
on p(x|v, y) and if we want to consider only the state at time k , we can marginalize out the
other states by integrating over all possible values

p(xk |v, y) =
∫
xi ,∀i ̸=k

p(x0, ..., xK |v, y)dxi ,∀i ̸=k (86)

It turns out that we can factor this probability density into two parts

p(xk |v, y) = ηp(xk |x̌0, v1:k , y0:k)p(xk |vk+1:K , yk+1:K ) (87)

where η is a normalization constant.

We can take our batch solution and factor it into the normalized product of two
Gaussian PDFs.
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Recursive Discrete-Time Filtering

To carry out this factorization we exploit the sparse structure in H and begin by partitioning it
into 12 blocks, of which 6 are non-zero

H =


H11

H21 H22

H32 H33

H43

 ,

information from 0...k − 1
information from k

information from k + 1
information from k + 2...K

(88)

whereas the first column refers to states from 0...k − 1, the second to states from k , and the
third to states from k + 1...K .
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Recursive Discrete-Time Filtering

For example, for k = 2, K = 4 the partitions of H and compatible z,W partitions are

H =



1
C0

−A0 1
C1

−A1 1
C2

−A2 1
C3

−A3 1
C4


, z =


z1
z2
z3
z4

 , W =


W1

W2

W3

W4

 (89)
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Recursive Discrete-Time Filtering

For HTW−1H we then have

HTW−1H =

HT
11W

−1
1 H11 +HT

21W
−1
2 H21 HT

21W
−1
2 H22

HT
22W

−1
2 H21 HT

22W
−1
2 H22 +HT

32W
−1
3 H32 HT

32W
−1
3 H33

HT
33W

−1
3 H32 HT

33W
−1
3 H33 +HT

43W
−1
4 H43

 = (90)

L11 L12
LT12 L22 LT32

L32 L33


where the intermediate variables Lij are used to assign the blocks of the matrix.
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Recursive Discrete-Time Filtering

For HTW−1z we have

HTW−1z =

HT
11W

−1
1 z1 +HT

21W
−1
2 z2

HT
22W

−1
2 z2 +HT

32W
−1
3 z3

HT
33W

−1
3 z3 +HT

43W
−1
4 z4

 =

r1r2
r3

 (91)

where again we have assigned the blocks to some intermediate variables ri .

Next we partition the states, x as

x =

x0:k−1

xk
xk+1:K

 states from 0...k − 1
states from k

states from k + 1...K
(92)
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Recursive Discrete-Time Filtering

The overall batch system of equations now takes the formL11 L12
LT12 L22 LT32

L32 L33

 x̂0:k−1

x̂k
x̂k+1:K

 =

r1r2
r3

 (93)

where (̂·) is added to indicate that this is the solution to the optimization problem discussed
earlier. We proceed with steps towards a recursive LG estimator to solve x̂k .

To isolate x̂k we left multiply both sides of the above equation by 1
−LT12L

−1
11 1 −LT32L

−1
33

1

 (94)
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Recursive Discrete-Time Filtering

The resulting system of equations isL11 L12

L22 − LT
12L

−1
11 L12 − LT

32L
−1
33 L32

L32 L33

 x̂0:k−1

x̂k
x̂k+1:K

 =

 r1
r2 − LT

12L
−1
11 r1 − LT

32L
−1
33 r3

r3

 (95)

and the solution for x̂k is thus

(L22 − LT12L
−1
11 L12 − LT32L

−1
33 L32)︸ ︷︷ ︸

P̂−1
k

x̂k = (r2 − LT12L
−1
11 r1 − LT32L

−1
33 r3)︸ ︷︷ ︸

qk

(96)

where P̂k ,qk are defined. Essentially, we have marginalized out x̂0:k−1 and x̂k+1:K .
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Recursive Discrete-Time Filtering

Substituting the values of the Lij blocks back into P̂−1
k we can see that

P̂−1
k = L22 − LT12L

−1
11 L12 − LT32L

−1
33 L32

= HT
22

(
W−1

2 −W−1
2 H21(H

T
11W

−1
1 H11 +HT

21W
−1
2 H21)

−1HT
21W

−1
2

)
H22︸ ︷︷ ︸

P̂−1
k,f =HT

22(W2+H21(HT
11W

−1
1 H11)−1HT

21)
−1

H22 by SMW

(97)

+HT
32

(
W−1

3 −W−1
3 H33(H

T
33W

−1
3 H33 +HT

43W
−1
4 H43)

−1HT
33W

−1
3

)
H32︸ ︷︷ ︸

P̂−1
k,b=HT

32(W3+H33(HT
43W

−1
4 H43)−1HT

33)
−1

H32 by SMW

(98)

= P̂−1
k,f︸︷︷︸

forward

+ P̂−1
k,b︸︷︷︸

backward

(99)

where the term labelled ‘forward’ depends only on the blocks of H and W up to time k and
the term ‘backward’ depends only on the blocks of H,W from k + 1 to K .

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 57 / 87



Recursive Discrete-Time Filtering

Turning into qk we substitute the values of Lij and ri blocks

qk = r2 − LT12L
−1
11 r1 − LT32L

−1
33 r3

= qk,f︸︷︷︸
forward

+ qk,b︸︷︷︸
backward

(100)

where again ‘forward’ depends only on quantities up to k and ‘backward’ depends only on
quantities from k + 1 to K , while

qk,f =−HT
22W

−1
2 H21(H

T
11W

−1
1 H11 +HT

21W
−1
2 H21)

−1HT
11W

−1
1 z1 (101)

+HT
22(W

−1
2 −W−1

2 H21(H
T
11W

−1
1 H11 +HT

21W
−1
2 H21)

−1HT
21W

−1
2 )z2

qk,b =HT
32(W

−1
3 −W−1

3 H33(H
T
33W

−1
3 H33 +HT

43W
−1
4 H43)

−1HT
33W

−1
3 )z3 (102)

−HT
32W

−1
3 H33(H

T
43W

−1
4 H43 +HT

33W
−1
3 H33)

−1HT
43W

−1
4 z4
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Recursive Discrete-Time Filtering

Let us define the following two ‘forward’ and ‘backward’ estimators x̂k,f and x̂k,b respectively

P̂−1
k,f x̂k,f = qk,f (103)

P̂−1
k,bx̂k,b = qk,b (104)

where x̂k,f depends only on quantities up to time k and x̂k,b depends only on quantities from
time k + 1 to K . Under these definitions we have that

P̂−1
k = P̂−1

k,f + P̂−1
k,b (105)

P̂−1
k x̂k = P̂−1

k,f x̂k,f + P̂−1
k,bx̂k,b (106)

which is the normalized product of two Gaussian PDFs.
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Recursive Discrete-Time Filtering

Referring to Eq. (87) we have that

p(xk |v, y) → N (x̂k , P̂k) (107)

p(xk |x̌0, v1:k , y0:k) → N (x̂k,f , P̂k,f ) (108)

p(xk |vk+1:K , yk+1:K ) → N (x̂k,b, P̂k,b) (109)

where P̂k , P̂k,f , P̂k,b are the covariance matrices associated with x̂k , x̂k,f , x̂k,b.

⇒ We have Gaussian estimators with the MAP estimators as the means.

Next we seek how we can turn the forward Gaussian estimator, x̂k,f , into a recursive filter.
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Kalman Filter via MAP

We shall show how to turn the forward estimator above into a recursive filter, the Kalman
Filter uing the MAP approach.

Notation is simplified: x̂k,f → x̂k , P̂k,f → P̂k not to be confused with the
batch/smoothed estimates presented earlier.
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Kalman Filter via MAP

Let us assume that we already have a forwards estimate and its covariance at time k − 1

{x̂k−1, P̂k−1} (110)

These estimates are based on al the data up to and including those at time k − 1. The goal is
to compute

{x̂k , P̂k} (111)

using all the data up to and including those at time k .

We do not need to start all over again. We can simply incorporate the new data at time k, vk
and yk into the estimate at time k − 1

{x̂k−1, P̂k−1, vk , yk} → {x̂k , P̂k} (112)
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Kalman Filter via MAP

To see this, let us define

z =

x̂k−1

vk
yk

 , H =

 1
−Ak−1 1

Ck

 , W =

P̂k−1

Qk

Rk

 (113)

where {x̂k−1, P̂k−1} serves as substitutes for all the data up to time k − 1.
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Kalman Filter via MAP

Our usual MAP solution to the problem is x̂ given by

(HTW−1H)x̂ = HTW−1z (114)

We then define

x̂ =

[
x̂′k−1

x̂k

]
(115)

where we distinguish x̂′k−1 from x̂k−1.

x̂′k−1 is the estimate at time k − 1 incorporating data up to and including time k

x̂k−1 is the estimate at time k − 1 using data up to and including k − 1.
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Kalman Filter via MAP

Substituting in the quantities from Eq. (113) to the least-squares solutiion[
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1 −AT

k−1Q
−1
k

−Q−1
k Ak−1 Q−1

k + CT
k R

−1
k Ck

] [
x̂′k−1

x̂k

]
=

[
P̂−1
k−1x̂k−1 − AT

k−1Q
−1
k vk

Q−1
k vk + CT

k R
−1
k yk

]
(116)

We can marginalize x̂′k−1 as we do not care for it since we aim for a recursive estimator to be
used onine and x̂′k−1 incorporates future data. We marginalize by left-multiplying both sides by[

1 0

Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1
1

]
(117)

this is an elemantary row operation and thus does not alter the solution to the linear system of
equations.
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Kalman Filter via MAP

Eq. (116) becomes

[
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1 −AT

k−1Q
−1
k

0 Q−1
k −Q−1

k Ak−1(P̂
−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1AT
k−1Q

−1
k + CT

k R
−1
k Ck

][
x̂′k−1
x̂k

]

=

[
P̂−1
k−1x̂k−1 − AT

k−1Q
−1
k vk

Q−1
k Ak−1(P̂

−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1(P̂−1
k−1x̂k−1 − AT

k−1Q
−1
k vk ) +Q−1

k vk + CT
k R

−1
k yk

]
(118)
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Kalman Filter via MAP

The solution for x̂k takes the form

Q−1
k −Q−1

k Ak−1(P̂
−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1AT
k−1Q

−1
k︸ ︷︷ ︸

(Qk+Ak−1P̂k−1AT
k−1)

−1(by SMW )

+CT
k R

−1
k Ck

 x̂k

=
(
Q−1

k Ak−1(P̂
−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1(P̂−1
k−1x̂k−1 − AT

k−1Q
−1
k vk) +Q−1

k vk + CT
k R

−1
k yk

)
(119)

Let us define the following quantities

P̌k = Qk + Ak−1P̂k−1A
T
k−1 (120)

P̂k = (P̌−1
k + CT

k R
−1
k Ck)

−1 (121)
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Kalman Filter via MAP

Eq. (119) becomes

P̂−1
k xk =Q−1

k Ak−1

(
P̂−1

k−1 + AT
k−1Q

−1
k Ak−1

)−1

P̂−1
k−1︸ ︷︷ ︸

P̌−1
k Ak−1

x̂k−1

+
(
Q−1

k −Q−1
k Ak−1(P̂

−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1AT
k−1Q

−1
k

)
︸ ︷︷ ︸

P̌−1
k

vk + CT
k R

−1
k yk (122)

=P̌−1
k (Ak−1x̂k−1 + vk)︸ ︷︷ ︸

x̌k

+CT
k R

−1
k yk (123)

where x̌k is defined as the ‘predicted’ value of the state.
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Kalman Filter via MAP

Furthermore, in the above we used that

Q−1
k Ak−1 (P̂

−1
k−1 + AT

k−1Q
−1
k Ak−1)

−1︸ ︷︷ ︸
apply SMW

P̂−1
k−1

= Q−1
k Ak−1

P̂k−1 − P̂k−1A
T
k−1 (Qk + Ak−1P̂k−1A

T
k−1)

−1︸ ︷︷ ︸
P̌−1
k

Ak−1P̂k−1

 P̂−1
k−1

=

Q−1
k −Q−1

k Ak−1P̂k−1A
T
k−1︸ ︷︷ ︸

P̌k−Qk

P̌−1
k

Ak−1

=
(
Q−1

k −Q−1
k + P̌−1

k

)
Ak−1

= P̌−1
k Ak−1 (124)
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Kalman Filter via MAP

Bringing the above together, leads to a recursive filter update formulation as follows

predictor: P̌k = Ak−1P̂k−1A
T
k−1 +Qk (125)

x̌k = Ak−1x̂k−1 + vk (126)

corrector: P̂−1
k = P̌−1

k + CT
k R

−1
k Ck (127)

P̂−1
k x̂k = P̌−1

k x̌k + CT
k R

−1
k yk (128)

which represents the inverse covariance or information form of the Kalman Filter.
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Kalman Filter via MAP

To get to the canonical form of the Kalman Filter some algebraic manipulation is required.
Let us define the Kalman gain Kk as

Kk = P̂kC
T
k R

−1
k (129)

Then we perform the following operations

1 = P̂k(P̌
−1
k + CT

k R
−1
k Ck)

= P̂k P̌
−1
k +KkCk (130)

P̂k = (1−KkCk)P̌k (131)

P̂kC
T
k R

−1
k︸ ︷︷ ︸

Kk

= (1−KkCk)P̌kC
T
k R

−1
k (132)

Kk(1+ Ck P̌kC
T
k R

−1
k ) = P̌kC

T
k R

−1
k (133)
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Kalman Filter via MAP

Solving for Kk in the last equation, we write the recursive filter equations

predictor: P̂k = Ak−1P̂k−1A
T
k−1 +Qk (134)

x̌k = Ak−1x̂k−1 + vk (135)

Kalman gain: Kk = P̌kC
T
k (Ck P̌kC

T
k + Rk)

−1 (136)

corrector: P̂k = (1−KkCk)P̌k (137)

x̂k = x̌k +Kk (yk − Ck x̌k)︸ ︷︷ ︸
innovation

(138)

where the innovation term represents the difference between the actual and the expected
measurements and the role of the Kalman gain is to properly weight the innovation’s
contribution to the estimate as compared to the prediction step.
In the above form, the Kalman Filter has been the workhorse of state estimation and
are identical to the forward pass Rauch-Tung-Striebel smoother.
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Kalman Filter via Bayesian Inference

A simpler derivation of the Kalman Filter can be derived using the Bayesian inference
approach. The Gaussian prior estimate at k − 1 is

p(xk−1|x̌0, v1:k−1, y0:k−1) = N (x̂k−1, P̂k−1) (139)

First, for the prediction step, we incorporate the latest input, vk , to write a ‘priori’ at time k

p(xk |x̌0, v1:k , y0:k−1) = N (x̌k , P̌k) (140)

where

P̌k = Ak−1P̂k−1A
T
k−1 +Qk (141)

x̌k = Ak−1x̂k−1 + vk (142)

which are identical to the prediction equations from the previous derivation. The last two
equations can in fact be found by exactly passing the prior at k − 1 through the linear motion
model.
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Kalman Filter via Bayesian Inference

For the mean we have

x̌k = E [xk ] = E [Ak−1xk−1 + vk +wk ]

= Ak−1 E [xk−1]︸ ︷︷ ︸
x̂k−1

+vk + E [wk ]︸ ︷︷ ︸
0

= Ak−1x̂k−1 + vk (143)

And for the covariance

P̌k = E [(xk − E [xk ])(xk − E [xk ])
T ]

= E [(Ak−1xk−1 + vk +wk − Ak−1x̂k−1 − vk)(Ak−1xk−1 + vk +wk − Ak−1x̂k−1 − vk)
T ]

= Ak−1 E [(xk−1 − x̂k−1)(xk−1 − x̂k−1)
T ]︸ ︷︷ ︸

P̂k−1

AT
k−1 + E [wkw

T
k ]︸ ︷︷ ︸

Qk

= Ak−1P̂k−1A
T
k−1 +Qk (144)
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Kalman Filter via Bayesian Inference

and finally for the latest measurement, at time k , we write

p(xk , yk |x̌0, v1:k , y0:k−1) = N
([

µx

µy

]
,

[
P̌k P̌kC

T
k

Ck P̌k Ck P̌kC
T
k + Rk

])
(145)

Based on Bayesian inference theory, we can directly write the conditional density for xk - or in
other terms the posterior - as

p(xk |x̌0, v1:k , y0:k) = N ((µx +ΣxyΣ
−1
yy (yk − µy )︸ ︷︷ ︸

x̂k

,Σxx −ΣxyΣ
−1
yy Σyx︸ ︷︷ ︸

P̂k

) (146)

where x̂k is the mean and P̂k is the covariance
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Kalman Filter via Bayesian Inference

Substituting in the moments derived above we derive the correction equations identical to
those from the MAP-based derivation.

Kk = P̌kC
T
k (Ck P̌kC

T
k + Rk)

−1 (147)

P̂k = (1−KkCk)P̌k (148)

x̂k = x̌k +Kk(yk − Ck x̌k) (149)

The two results are identical as both the motion and measurement models are linear and the
noises and prior are Gaussian.

Under these conditions, the posterior density is exactly Gaussian. Thus the mean and
mode of the posterior are the same.
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Error Dynamics

To understand filter performance and stability properties, it is useful to look at the difference
between the estimated and the actual state. Let us define the following errors

ěk = x̌k − xk (150)

êk = x̂k − xk (151)

using the system dynamics and the equations of the Kalman filter we can rewrite

ěk = Ak−1êk−1 −wk (152)

êk = (1−KkCk)ěk +Kknk (153)

where ê0 = x̂0 − x0.
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Error Dynamics

As can be shown by the above equations, if E [ê0] = 0 then E [êk ] = 0.
Proof by induction: It is true for k = 0 - assume it is also true for k − 1, then

E [ěk ] = Ak−1 E [êk−1]︸ ︷︷ ︸
0

−E [wk ]︸ ︷︷ ︸
0

= 0 (154)

E [êk ] = (1−KkCk)E [ěk ]︸ ︷︷ ︸
0

+Kk E [nk ]︸ ︷︷ ︸
0

= 0 (155)

Thus it is true for all k. This means that our estimator is unbiased.
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Error Dynamics

It is also true that as long as E [ê0êT0 ] = P̂0,

E [ěk ě
T
k ] = P̌k (156)

E [êk ê
T
k ] = P̂k (157)

for k > 0. This means that our estimator is consistent.
Proof by induction: It is true for k = 0 by assertion - assume E [êk−1ê

T
k−1] = P̂k−1

E [ěk ě
T
k ] = E

[
(Ak−1êk−1 −wk)(Ak−1êk−1 −wk)

T
]

= Ak−1 E [êk−1ê
T
k−1]︸ ︷︷ ︸

P̂k−1

AT
k−1 − Ak−1 E [êk−1w

T
k ]︸ ︷︷ ︸

0 by independence

− E [wk ê
T
k−1]︸ ︷︷ ︸

0 by independence

AT
k−1 E [wkw

T
k ]︸ ︷︷ ︸

Qk

= P̌k (158)
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Error Dynamics

and

E [êk ê
T
k ] = E

[
((1−KkCk)ěk +Kknk)((1−KkCk)ěk +Kknk)

T
]

= (1−KkCk)E [ěk ě
T
k ]︸ ︷︷ ︸

P̌k

(1−KkCk)
T + (1−KkCk) E [ěkn

T
k ]︸ ︷︷ ︸

0 by independence

KT
k

+Kk E [nk ě
T
k ]︸ ︷︷ ︸

0 by independence

(1−KkCk)
T +Kk E [nkn

T
k ]︸ ︷︷ ︸

Rk

KT
k

= (1−KkCk)P̌k −P̂kC
T
k K

T
k +KkRkK

T
k︸ ︷︷ ︸

0 because Kk=P̂kC
T
k R

−1
k

= P̂k (159)

It is therefore ture for all k .
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Error Dynamics

The true uncertainty in the system (i.e., the covariance of the error, E [êk ê
T
k ]) is perfectly

modelled by our estimate of the covariance, P̂k .

The Kalman filter is an optimal filter.

The Kalman filter is called the Best Linear Unbiased Estimate (BLUE).

The covariance of the Kalman filter is exactly at the Cramér-Rao Lower Bound (CRLB).
In other words we cannot be any more certain in our estimate given the uncertainty in the
measurements we have used in that estimate.

The expectations employed here are overall all possible outcmes of the random variables!
They are not time averages. The average performance over an infinite number of trials
will be that of zero error but this does not imply that within a single trial the error will be
zero or decay to zero over time.
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Existence, Uniqueness, and Observability

Below we present the key steps to be taken towards a proof of the stability of the Kalman
Filter.

We consider the LTI case.

To avoid confusion with the lifted form of equations we use italics in the following notation
simplification Ak = A,Ck = C ,Qk = Q,Rk = R
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Existence, Uniqueness, and Observability

Step 1: The covariance equation of the KF can be iterated to convergence prior. A question
is whether the covariance will converge to its steady-state value and, if so, whether it will be
unique. Writing P for the steady-state value for P̌k we have that the following holds at
steady-state:

P = A(1− KC )P(1− KC )TAT + AKRKTAT + Q (160)

which is one form of the Discrete Algebraic Riccati Equation (DARE).
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Existence, Uniqueness, and Observability

The DARE has a unique positive-semidefinite solution, P, if and only if the following
conditions hold

R ≻ 0 as already assumed in the batch LG case

Q ⪰ 0 while in the batch LG we have assumed Q ≻ 0

(A,V ) is stabilizable with V TV = Q - this condition is redundant when Q ≻ 0

(A,C ) is detectable which is the same as observable except any ubobservable eigenvalues
are stable.
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Existence, Uniqueness, and Observability

Step 2: Once the covariance evolves to its steady-state value, P, so does the Kalman gain.
Let K be the steady-state value of Kk . We have

K = PCT (CPCT + R)−1 (161)

for the steady-state Kalman gain.
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Existence, Uniqueness, and Observability

Step 3: The errpr dynamics of the filter are then stable

E [ěk ] = A(1− KC )︸ ︷︷ ︸
eigs.<1 in mag.

E [ěk−1] (162)

we can see this by noting that for any eigenvector, v, corresponding to an eigenvalue, λ, of
(1− KC )TAT , we have

vTPv = vTA(1− KC )︸ ︷︷ ︸
λvT

P (1− KC )TATv︸ ︷︷ ︸
λv

+vT (AKRKTAT + Q)v (163)

(1− λ2) vTPv︸ ︷︷ ︸
>0

= vT (AKRKTAT + Q)v︸ ︷︷ ︸
>0

(164)

which means that it must |λ| < 1 and thus the steady-state error dynamics are stable.
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Thank you

Q&A

Assignments

Other matters

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 87 / 87


	Introduction
	Batch Discrete-Time Estimation
	Problem Setup
	Maximum A Posteriori (MAP)
	Bayesian Inference
	Existence, Uniqueness, and Observability
	MAP Covariance

	Recursive Discrete-Time Smoothing
	Exploiting Sparsity in the Batch Solution
	Cholesky Smoother

	Recursive Discrete-Time Filtering
	Factoring the Batch Solution
	Kalman Filter via MAP
	Kalman Filter via Bayesian Inference
	Error Dynamics
	Existence, Uniqueness, and Observability


