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Introduction

In the real-world case, the processes will not be linear-Gaussian systems.

We shall discuss some of the most common approaches to deal with nonlinear and/or
non-Gaussian systems.

We begin by contrasting full Bayesian estimation to Maximum A Posteriori (MAP)
estimation for nonlinear systems.

We shall introduce the Bayes filter.

We discussed common methods such as the Extended Kalman Filter, the sigmapoint
Kalman Filter and particle filter as approximations of the Bayes filter.

We further discuss batch optimization for nonlinear systems, both in the discrete and
continuous time case.

Main reference: Barfoot, T.D., 2017. State estimation for robotics. Cambridge University
Press.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 4 / 103



Introduction

Figure: Skewed gaussian results.
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Introduction
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Figure: Skewed gaussian results.
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Introduction

For the case of linear-Gaussian estimation, and specifically for the case of linear motion
and observation models driven by Gaussian noise, the full Bayesian and MAP estimation
paradigms provide the same answer.

The above is not the case when we move to nonlinear models.

For the case of nonlinear models, the full Bayesian posterior is no longer Gaussian.

To develop intuition with respect to the above, we look at a simple one-dimensional nonlinear
estimation problem: estimating the position of a landmark from an ideal stereo camera.
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Introduction
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Figure: Idealized stereo camera model relating the landmark depth, x , to the (noise-free) disparity
measurement, y .
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Full Bayesian Estimation

Considering a simplified pinhole model for a stereo camera pair, it then holds

y =
fb

x
+ n (1)

where

x : state, the position of a landmark (in metres)

y : measurement, the disparity between the horizontal coordinates of the landmark in the
left and right images (in pixels)

f : the focal length (in pixels)

b: the baseline, i.e., the horizontal distance between left and right cameras (in metres)

n: the measurement noise (in pixels)

where the state
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Full Bayesian Estimation

To perform Bayesian inference

p(x |y) = p(y |x)p(x)∫∞
∞ p(y |x)p(x)dx

(2)

we require expressions for both p(y |x) and p(x). To meet this requirement, we make two
assumptions.
Assumption 1: The measurement noise is zero-mean Gaussian, n ∼ N (0,R) such that

p(y |x) = N
(
fb

x
,R

)
=

1√
2πR

(
− 1

2R

(
y − fb

x

)2
)

(3)

Assumption 2: The prior is Gaussian, where

p(x) = N (x̌ , P̌) =
1√
2πP̌

exp

(
− 1

2P̌
(x − x̌)2

)
(4)
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Full Bayesian Estimation

We continue by first noting that Bayesian estimation implies a certain order of operations:

assign prior → draw xtrue → draw ymeas → compute posterior

We start with the prior. The ‘true’ state is then drawn from the prior, and the measurement is
generated by observing the true state through the camera model and adding noise. The
estimator then reconstructs the posterior from the measurement and prior, without knowing
xtrue . This process is necessary to ensure a ‘fair’ comparison between state estimation
algorithms.
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Full Bayesian Estimation

For the particular example, let the following specific parameters hold

x̌ = 20[m], P̌ = 9[m2], f = 400[pixel], b = 0.1[m], R = 0.09[pixel2] (5)

The true state, xtrue , and the noise-corrupted measurement, ymeas , are drawn randomly from
p(x) and p(y |x) respectively. Each time we repeat the experiment, these values will change.
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Full Bayesian Estimation

Considering xtrue = 22[m] and ymeas = (fb/xtrue) + 1[pixel] then the following prior and
posterior distributions are calucated by numerically deriving the denominator in the Bayes’ rule

Figure: Example of Bayesian inference on one-dimensional stereo camera example. The posterior is not
Gaussian due to the nonlinear measurement model.
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Full Bayesian Estimation

Figure: Example of Bayesian inference on one-dimensional stereo camera example. The posterior is not
Gaussian due to the nonlinear measurement model.

The posterior is asymmetrical, skewed to one side by the nonlinear observation model.
However, it is still unimodal which could imply that we would be justified by approximating it
as Gaussian.
We also see that the incorporation of the measurement results in a posterior that has less
variance about the state than the prior: this is the main idea of Bayesian state estimation - we
want to incorporate measurements into the prior to become more certain about the posterior
case.
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Maximum A Posteriori Estimation

Computing the full Bayesian posterior can be intractable in general. A very common approach
is to seek out only the value of the state that maximizes the true posterior. This is the goal of
the Maximum A Posteriori (MAP) estimation.

In other words we want to compute

x̂map = argmax
x

p(x |y) (6)

Equivalently, we can try minimizing the negative log likelihood

x̂map = argmin
x

(− ln(p(x |y))) (7)

which can be easier when the PDFs involved are from the exponential family. As we are
seeking only the most likely state, we can use Bayes’ rule to write

x̂map = argmin
x

(− ln(p(y |x))− ln(p(x))) (8)

which drops p(y) since it does not depend on x .
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Maximum A Posteriori Estimation

Figure: Posterior from the stereo camera example, p(x |y), as well as the negative log likelihood of the
posterior - ln(p(x |y). The MAP solution is simply the value of x that maximizes (or minimizes) either
of these functions. The MAP solution is the mode of the posterior, which is not generally the same as
the mean.
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Maximum A Posteriori Estimation

Relating this back to the stereo camera example, we can write

x̂map = argmax
x

J(x) (9)

J(x) =
1

2R

(
y − fb

x

)2

+
1

2P̌
(x̌ − x)2 (10)

where we have dropped any further normalization constants not depending on x . The result,
x̂map, can be found through various optimization techniques.

Since the MAP estimator, x̂map, fnds the most likely state given the data prior, the question is
how well does this estimator capture xtrue .
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Maximum A Posteriori Estimation

To evaluate how well our estimators are performing, we try to compare our estimates x̂ with
respect to some ‘ground truth’ whenever this is available. We thus compute

emean(x̂) = EXN [x̂ − xtrue ] (11)

where EXN [·] represents the expectation operator. Importantly, we are averaging both over the
random draw of xtrue from the prior and the random draw of n from the measurement noise.

Since xtrue is assumed to be independent of n, we have that EXN [xtrue ] = EX [xtrue ] = x̌ and
thus

emean(x̂) = EXN [x̂ ]− x̌ (12)

Importantly, under this performance measure, the MAP estimator is biased (i.e,
emean(x̂map) ̸= 0) due to the presence of a nonlinear measurement model, g(·) and the fact
that the mode and the mean of the posterior PDF are not the same! As discussed, in the
linear case for g(·), emean(x̂map) = 0.
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Maximum A Posteriori Estimation

However, since we can trivially set the estimate to the prior, x̂ = x̌ , and obtain emean(x̌) = 0,
we need to define a secondary performance metric. This is typically the average squared
error, esq

esq = EXN [(x̂ − xtrue)
2] (13)

In other words

emean captures the mean of the estimator error

esq captures the combined effects of bias and variance

High performance across both metrics results in the bias-variance tradeoff in the machine
learning literature and good performance on both is needed for a practical state estimator.
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Maximum A Posteriori Estimation

Figure: Histogram of estimator values for 106 trials of the stereo camera experiment where each time a
new xtrue is randomly drawn from the prior and a new ymeas is randomly drawn from the measurement
model. The dash line marks the mean of the prior, x̌ , and the solid line marks the expected value of the
MAP estimator, x̂map, over all the trials. The gap between dashed and solid is emean = −33.0[cm],

which indicates a bias. The average squaered error is esq = 4.41[m2
].
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Gaussian Process Regression

We shall take a Gaussian process regression approach to state estimation. This allows

Represent trajectories in continuous time, thus enabling to query the solution at any time
of interest.

For the nonlinear case, to optimize our solution by iterating over the entire trajectory
(difficult to do in the recursive formulation which typically iterates at just one timestep at
a time).

Under certain class of prior motion models, GP regression enjoys a sparse structure that allows
for efficient solutions.
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Recursive Discrete-Time Estimation

Analogously to the linear case, we shall work first on discrete-time estimation.

We shall work on nonlinear state estimation methods and introduce the Extended Kalman
Filter, the Generalized Gaussian Filter, the Iterated Extended Kalman Filter, the Particle
Filter, the (Iterated) Sigmapoint Kalman Filter .

We shall then discuss relevance to Batch Discrete-Time Estimation and not
Continuous-Time Estimation.

Main reference: Barfoot, T.D., 2017. State estimation for robotics. Cambridge University
Press.
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Problem Setup

We require a set of motion and observation models upon which we base our estimation.

As in the linear case, we shall consider discrete-time, time-invariant equations but also
allow nonlinear expressions.

Let us define the following motion and observation models:

motion model: xk = f(xk−1, vk ,wk), k = 1...K (14)

observation model: yk = g(xk ,nk), k = 0...K (15)

where k is the discrete-time index and K its maximum, f the nonlinear motion model, and g
the nonlinear observation model. For now, we do not make explicit assumptions that any of
the random variables is Gaussian.
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Problem Setup

Figure: Graphical model representation of the Markov processes constituting the Non-Linear,
Non-Gaussian (NLNG) system in Eqs. (14,15).
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Problem Setup

Markov Process

In the simplest sense, a stochastic process has the Markov property if the conditional
probability density functions (PDFs) of future states of the process, given the present state,
depend only upon the present state, but not only other past states, i.e., they are conditionally
independent of these older states. Such a process is called Markovian or a Markov process.

The system in Eqs. (14,15) is a Markov Process.

Once we know the value of xk−1 we do not need to know the value of any previous states
to evolve the system forward in time to compute xk .

Question: Can we have a recursive solution to NLNG systems as we had in the
linear-Gaussian case? Yes, but only approximately.
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Bayes Filter

The Bayes filter seeks to derive an entire PDF to represent the likelihood of the state, xk ,
using only measurements up to and including the current time. I.e., we want to compute

p(xk |x̌0, v1:k , y0:k) (16)

which is also called the belief for xk . Recall that

p(xk |v, y) = η p(xk |x̌0, v1:k , y0:k)︸ ︷︷ ︸
forwards

p(xk |vk+1:K , yk+1:K )︸ ︷︷ ︸
backwards

(17)

Accordingly, we will focus on turning the ‘forwards’ PDF into a recursive filter for nonlinear
non-Gaussian systems (NLNG).
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Bayes Filter

Assuming that all measurements are statistically independent, we can factor out the latest
measurement

p(xk |x̌0, v1:k , y0:k) = ηp(yk |xk)p(xk |x̌0, v1:k , y0:k−1) (18)

where Bayes’ rule was used to reverse the dependence and η is a normalization constant.

Focusing on the second factor, we introduce the hidden state, xk−1, and integrate over all
possible variables

p(xk |x̌0, v1:k , y0:k−1) =

∫
p(xk , xk−1|x̌0, v1:k , y0:k−1)dxk−1 =

∫
p(xk |xk−1, x̌0, v1:k , y0:k−1)p(xk−1|x̌0, v1:k , y0:k−1)dxk−1

(19)

where the introduction of the hidden state can be viewed as the opposite of marginalization.

So far, no approximations have been introduced!
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Bayes Filter

Since our system enjoys the Markov property (on the estimator), we use it to express

p(xk |xk−1, x̌0, v1:k , y0:k−1) = p(xk |xk−1, vk) (20)

p(xk−1|x̌0, v1:k , y0:k−1) = p(xk−1|x̌0, v1:k−1, y0:k−1) (21)

Substituting Eq. (20,21,19) into Eqs. (18), we have the Bayes Filter

p(xk |x̌0, v1:k , y0:k)︸ ︷︷ ︸
posterior belief

= η p(yk |xk)︸ ︷︷ ︸
observation
correction
using g(·)

∫
p(xk |xk−1, vk)︸ ︷︷ ︸

motion
prediction
using f(·)

p(xk−1|x̌0, v1:k−1, y0:k−1)︸ ︷︷ ︸
prior belief

dxk−1 (22)
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Bayes Filter

Figure: Graphical depictions of the Bayes filter. The dashed line indicates that in practice a hint could
be passed to the ‘correction step’ about the states in which the probability mass of the belif function is
concentrated. This can be used to reduce the need to work out the full density for the observation, yk ,
given the state, xk .
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Bayes Filter

Eq. (22) takes a predictor-corrector form.

prediction step: the prior belief, p(xk−1|x̌0, v1:k−1, y0:k−1), is propagated forward in time
using the input, vk , and the motion model, f(·).
correction step: the predicted estimate is then updated using the measurement yk , and
the measurement model, g(·).
result: posterior belief, p(xk |x̌0, v1:k , y0:k)

Importantly, we require methods of passing PDFs through the nonlinear functions f(·), g(·).

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 31 / 103



Bayes Filter

The Bayes filter is not implementable for all cases but the linear-Gaussian one

The Bayes filter is nothing more that a mathematical artifact, it cannot be implemented in
practice with the exception of the linear-Gaussian case.
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Bayes Filter

There are two reasons for the above, and necessary approximations are to be introduced

1 Probability density functions live in an infinite-dimensional space (as do all continuous functions)
and as such an infinite amount of memory (i..e, infinite number of parameters) would be needed
to completely represent the belief, p(xk |x̌0, v1:k , y0:k). To overcome this memory issue, the belief is
approximately represented. One approach is to approximate this function as a Gaussian PDF
(i.e., keep track of the first two moments, mean and covariance). Another approach is to
approximate the PDF using a finite number of random samples.

2 The integral in the Bayes filter is computationally expensive; it would require infinite computing
resources to evaluate exactly. To overcome this computational resource issue, the integral must be
evaluated approximately. One approach is to linearize the motion and observation models and
then evaluate the integrals in closed form. Another approach is to employ Monte Carlo
integration.
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Bayes Filter

Much of the research in recursive state estimation has focused on better approximations
to handle the above two issues.

We shall look into some of the classic and modern approaches to approximate the Bayes
filter.

We must keep in our mind the assumption on which the Bayes filter relies: the Markov
property. Does this hold when we start making these approximations to the Bayes filter?
We will look that in further detail.
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Extended Kalman Filter

The Extended Kalman Filter (EKF) is the most commonly used estimation and data
fusion tool in many domains.

The EKF can often be effective for mildly nonlinear, non-Gaussian systems.

EKF was a key tool to estimate spacecraft trajectories on the NASA Apollo program.

The Bayes Filter and the EKF

We shall show that if the belief is constrainted to be Gaussian, the noise is Gaussian, and we
linearize the motion and observation models in order to carry out the integral (and also the
normalized produced) in the Bayes Filter, we arrive at the Extended Kalman Filter.
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Extended Kalman Filter

To derive the EKF, we first constrain our belief function for xk to be Gaussian

p(xk |x̌0, v1:k , y0:k) = N
(
x̂k , P̂k

)
(23)

where x̂k , P̂k are the mean and covariance, respectively.
We further assume that the noise variables, wk and nk (∀k) are also Gaussian

wk ∼ N (0,Qk) (24)

nk ∼ N (0,Rk) (25)

A Gaussian PDF can be transformed to non-Gaussian through a nonlinearity. We assume this
is the case for the noise variables, i.e., the nonlinear motion and observation models may affect
wk ,nk .
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Extended Kalman Filter

This means that these noise parameters as in Eqs. (14,15) are not necessarily additive after
the nonlinearities. Additive form would look like

xk = f(xk−1, vk) +wk (26)

yk = g(xk) + nk (27)

In fact, Eqs (26,27) are a special case of Eqs. (14,15) and we shall show that we can recover
approximate additive noise representations through linearization.
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Extended Kalman Filter

As g(·) and f(·) are nonlinear, we cannot compute the integral of the Bayes filter in closed
form. To overcome this, we linearize the motion and observation models about the
current state estimate mean

f(xk−1, vk ,wk) ≈ x̌k + Fk−1(xk−1 − x̂k−1) +w′
k (28)

g(xk ,nk) ≈ y̌k + Gk(xk − x̌k) + n′k (29)

where

x̌k = f(x̂k−1, vk , 0), Fk−1 =
∂f(xk−1,vk ,wk )

∂xk−1

∣∣∣
x̂k−1,vk ,0

, w′
k = ∂f(xk−1,vk ,wk )

∂wk

∣∣∣
x̂k−1,vk ,0

wk (30)

and

y̌ = g(x̌k , 0), Gk = ∂g(xk ,nk )
∂xk

∣∣∣
x̌k ,0

, n′k = ∂g(xk ,nk )
∂nk

∣∣∣
x̌k ,0

nk (31)
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Extended Kalman Filter

Accordingly, the statistical properties of the current state, xk , given the old state and
latest input, take the form

xk ≈ x̌k + Fk−1(xk−1 − x̂k−1) +w′
k (32)

E [xk ] ≈ x̌k + Fk−1(xk−1 − x̂k−1) + E [w′
k ]︸ ︷︷ ︸

0

(33)

E
[
(xk − E [xk ])(xk − E [xk ])

T
]
≈ E

[
w′

kw
′
k
T
]

︸ ︷︷ ︸
Q′

k

(34)

p(xk |xk−1, vk) ≈ N (x̌k + Fk−1(xk−1 − x̂k−1),Q
′
k) (35)
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Extended Kalman Filter

For the statistical properties of the current measurement, yk , given the current state we
have

yk ≈ y̌k + Gk(xk − x̌k) + n′k (36)

E [yk ] ≈ y̌k + Gk(xk − x̌k) + E [n′k ]︸ ︷︷ ︸
0

(37)

E
[
(yk − E [yk ])(yk − E [yk ])

T
]
≈ E

[
n′kn

′
k
T
]

︸ ︷︷ ︸
R′
k

(38)

p(yk |xk) ≈ N (y̌k + Gk(xk − x̌k),R
′
k) (39)
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Extended Kalman Filter

Then the Bayes filter becomes

p(xk |x̌0, v1:k , y0:k)︸ ︷︷ ︸
N (x̂k ,P̂k )

= η p(yk |xk)︸ ︷︷ ︸
N (y̌k+Gk (xk−x̌k ),R′

k )

∫
p(xk |xk−1, vk)︸ ︷︷ ︸

N (x̌k+Fk−1(xk−1−x̌k−1),Q′
k )

p(xk−1|x̌0, v1:k−1, y0:k−1)︸ ︷︷ ︸
N (x̂k−1,P̌k−1)

dxk−1

(40)

Using the formula on passing a Gaussian through a (stochastic) nonlinearity, we can see that
the integral is also Gaussian

p(xk |x̌0, v1:k , y0:k)︸ ︷︷ ︸
N (x̂k ,P̂k )

= η p(yk |xk)︸ ︷︷ ︸
N (y̌k+Gk (xk−x̌k ),R′

k )

∫
p(xk |xk−1, vk)p(xk−1|x̌0, v1:k−1, y0:k−1)︸ ︷︷ ︸

N (x̌k ,Fk−1P̂k−1FT
k−1+Q′

k )

dxk−1 (41)
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Extended Kalman Filter

We are now left to work out the normalized product of two Gaussian PDFs. We find that

p(xk |x̌0, v1:k , y0:k)︸ ︷︷ ︸
N (x̂k ,P̂k )

= ηp(yk |xk)
∫

p(xk |xk−1, vk)p(xk−1|x̌0, v1:k−1, y0:k−1)dxk−1︸ ︷︷ ︸
N(x̌k+Kk (yk−y̌k ),(1−KkGk )(Fk−1P̂k−1F

T
k−1+Q′

k ))

(42)

where Kk is the Kalman gain matrix.
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Extended Kalman Filter

By comparing left and right sides of the posterior expression, we arrive to the classic
recursive update equations for the EKF

predictor: P̌k = Fk−1P̂k−1F
T
k−1 +Q′

k (43)

x̌k = f(x̂k−1, vk , 0) (44)

Kalman gain: Kk = P̌kG
T
k (Gk P̌kG

T
k + R′

k)
−1 (45)

corrector: P̂k = (1−KkGk)P̌k (46)

x̂k = x̌k +Kk (yk − g(x̌k , 0))︸ ︷︷ ︸
innovation

(47)

The update equations allow us to compute
{
x̂k , P̂k

}
from the estimates of the previous

timestep
{
x̂k−1, P̂k−1

}
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Extended Kalman Filter

The EKF equations have similar structure to KF for the linear-Gaussian case. Yet there are
two important differences

1 The nonlinear motion and observation models are used to propagate the mean of the
estimate.

2 There are Jacobians embedded in the Q′
k and R′

k covariances of the noise. This is
because we allowed the noise to be applied within the nonlinearities in Eqs. (14,15).
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Extended Kalman Filter

There is no guarantee that the EKF will perform well for a general nonlinear system.
Most likely one has to give it a try.

The main problem with the EKF is the operating point of the linearization is the mean
of the estimate and this is not the true state - or necessarily close to it.

This can cause the EKF to diverge wildly in certain cases.

Even when the result is not dramatic, often we have biased and/or inconsistent
estimates. Hopefully, not too much.
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Generalized Gaussian Filter

The Bayes filter can be written exactly. To reach implementable filters we perform different
approximations on the form of the estimated PDF and the handling methods. An alternative
to deriving such filters starts by assuming a priori that the estimated PDF is Gaussian.
In general, we begin with a Gaussian prior at time k − 1

p(xk−1|x̌0, v1:k−1, y0:k−1) = N (x̂k−1, P̂k−1) (48)

we pass this forwards in time through the nonlinear model, f(·), to propose a Gaussian prior at
time k and thus formulate the prediction step which incorporates the latest input vk .

p(xk |x̌0, v1:k , y0:k−1) = N (x̌k , P̌k) (49)
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Generalized Gaussian Filter

For the correction step, we write the joint Gaussian for the state and the latest measurement,
at time k

p(xk , yk |x̌0, v1:k , y0:k−1) = N
([

µx ,k

µy ,k

]
,

[
Σxx ,k Σxy ,k

Σyx ,k Σyy ,k

])
(50)

we now write the conditional Gaussian density for xk , the posterior estimate

p(xk |x̌0, v1:k , y0:k) = N

µx ,k +Σxy ,kΣ
−1
yy ,k(yk − µy ,k)︸ ︷︷ ︸
x̂k

,Σxx ,k −Σxy ,kΣ
−1
yy ,kΣyx ,k︸ ︷︷ ︸

P̂k

 (51)

where x̂x , P̂k are the mean and covariance respectively. The nonlinear observation model, g(·),
is used in the computation of µy ,k .
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Generalized Gaussian Filter

Then we can write the generalized Gaussian correction-step equations as

Kk = Σxy ,kΣ
−1
yy ,k (52)

P̂k = P̌k −KkΣ
T
xy ,k (53)

x̂k = x̌k +Kk(yk − µy ,k) (54)

where we have let µx ,k = x̌k ,Σxx ,k = P̌k and Kk is the Kalman gain.

Unfortunately, if the motion and observation models are nonlinear, then we cannot compute all
the remaining quantities exactly: µy ,k , Σyy ,k , Σxy ,k because putting a Gaussian PDF through
a nonlinearity returns to a non-Gaussian result.
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Iterated Extended Kalman Filter

The goal is now to derive the Iterated Extended Kalman Filter (IEKF) exploiting the
alternative derivation approach. For the prediction step we directly write notionally that for
the prior at time k it holds

p(xk |x̌0, v1:k , y0:k−1) = N (x̌k , P̌k) (55)

which incorporates vk .

The correction step is more involved and we shall perform the derivations.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 49 / 103



Iterated Extended Kalman Filter

Our nonlinear measurement model is given by

yk = g(xk ,nk) (56)

by linearizing around an arbitrary operating point, xop,k

g(xk ,nk) ≈ yop,k + Gk(xk − xop,k) + n′k (57)

yop,k = g(xop,k , 0), Gk = ∂g(xk ,nk )
∂xk

∣∣∣
xop,k ,0

, n′k = ∂g(xk ,nk )
∂nk

∣∣∣
xop,k ,0

nk (58)

where the Jacobians are evaluated at xop,k .
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Iterated Extended Kalman Filter

Using the linearized model, we express the joint density for the state and the
measurement at time k as approximately Gaussian

p(xk , yk |x̌0, v1:k , y0:k−1) ≈ N
([

µx ,k

µy ,k

]
,

[
Σxx ,k Σxy ,k

Σyx ,k Σyy ,k

])
= N

([
x̌k

yop,k + Gk(x̌k − xop,k)

]
,

[
P̌k P̌kG

T
k

Gk P̌k Gk P̌kG
T
k + R′

k

])
(59)
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Iterated Extended Kalman Filter

If the measurement, yk , is known then we write the Gaussian conditional probability for xk
(i.e., the posterior)

p(xk |x̌0, v1:k , y0:k) = N

µx ,k +Σxy ,kΣ
−1
yy ,k(yk − µy ,k)︸ ︷︷ ︸
x̂k

,Σxx ,k −Σxy ,kΣ
−1
yy ,kΣxy ,k︸ ︷︷ ︸

P̂k

 (60)

where again x̂k , P̂k are the mean and covariance, respectively.
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Iterated Extended Kalman Filter

As shown shown earlier, the generalized Gaussian correction-step equations are (repeated)

Kk = Σxy ,kΣ
−1
yy ,k

P̂k = P̌k −KkΣ
T
xy ,k

x̂k = x̌k +Kk(yk − µy ,k)

Substituting in the moments µy ,k ,Σyy ,k ,Σxy ,k from above we have

Kk = P̌kG
T
k (Gk P̌kG

T
k + R′

k)
−1 (61)

P̂k = (1−KkGk)P̌k (62)

x̂k = x̌k +Kk(yk − yop,k − Gk(x̌k − xop,k)) (63)

these equations are very similar to the classical Kalman gain and corrector equations with the
only difference being the operating point of the linearization.
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Iterated Extended Kalman Filter

If in these revised equations (repeated here)

Kk = P̌kG
T
k (Gk P̌kG

T
k + R′

k)
−1

P̂k = (1−KkGk)P̌k

x̂k = x̌k +Kk(yk − yop,k − Gk(x̌k − xop,k))

we set the operating point of the linearization to be the mean of the predicted prior,
xop,k = x̌k then Eqs. (61-63) are identical to the classical EKF Eqs. (45-47).
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Iterated Extended Kalman Filter

However, the Eqs. (61-63) indicate that we can do better than the classical
implementation. Specifically, if we iteratively recompute Eqs. (61-63) each time setting the
operating point to be the mean of the posterior at the last iteration

xop,k ← x̂k (64)

where in the first iteration we take xop,k = x̌k .

This allows to linearize about better and better estimates, thereby improving our
approximation at each iteration. We terminate the process when the derived change in
xop,k between two iterations is very small.

Importantly, the covariance equation needs to be computed only once, after the other two
equations converged based on the criterion above.
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IEKF is a MAP Estimator

Relationship between the EKF/IEKF estimate and the full Bayesian posterior?

At the level of the correction step at a single timestep, the IEKF estimate corresponds to a
(local) maximum of the full posterior. In other words, it is a MAP estimate. However, since
the EKF is not iterated, it can be far from a local maximum. In fact, there is very little we can
say about its relationship to the full posterior.
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Iterated Extended Kalman Filter

Figure: Stereo camera example, comparing the inference (i.e., “corrective”) step of the EKF and IEKF
to the full Bayesian posterior ,p(x |y). The mean of the IEKF matches up against the MAP solution,
x̂map, while the EKF does not. The actual mean of the posterior is denoted as x̄ .
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Iterated Extended Kalman Filter

The choice to iteratively re-linearize about the best guess leads to a MAP solution. Thus, the
“mean” of the IEKF Gaussian estimator does not actually match the mean of the full Bayesian
posterior; it matches the mode.
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Alternatives for Passing PDFs through Nonlinearities

For both EKF/IEKF we performed linearization of the nonlinear model about an operating
point and then passed our Gaussian PDFs through the linearized model analytically. Other
approaches are possible. Three common techniques

1 Linearization (as in the EKF)

2 Monte Carlo (brute force) method for sampling

3 Sigmapoint (or unscented) transformation

The different methods can be used in conjunction with the Bayes filter to derive alternatives to
EKF/IEKF.
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Monte Carlo Method

The Monte Carlo method of transforming a PDF through a nonlinearity is the “brute force”
approach to the problem. Essentially, we draw a large number of samples from the input
density, transform each sample through the nonlinearity exactly, and then build the output
density from the transformed samples (e.g., by computing statistical moments).

The law of large numbers ensures that this process will converge to the correct answer as the
number of samples approaches infinity.
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Monte Carlo Method

Figure: Monte Carlo method to transform a PDF through a nonlinearity. A large number of random
samples are drawn from the input density, passed through the nonlinearity, and then used to form the
output density.
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Monte Carlo Method

Main Disadvantage of the Monte Carlo method

It can be extremely computationally expensive, especially when the dimensionality grows.

Advantages of the Monte Carlo method

It works with any PDF, not just Gaussian.

It handles any type of nonlinearity (no requirement for differentiable or even continuous)

We do not need to know the mathematical form of the nonlinear function - in practice
could be any software function.

It is an “anytime” algorithm - we can easily trade-off accuracy against speed by choosing
the number of samples appropriately (up to some extent in practice).

As this method can be very accurate, it is also a benchmark for the others.
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Monte Carlo Method

Note: the mean of the output density is not the same as the mean of the input density after
being passed through the nonlinearity. This is key and the Monte Carlo method can
approach the correct answer with a large number of samples, but other methods
cannot.
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Linearization

The linearization-based approach is still the most widely used (EKF/IEKF). In this case, the
mean is actually passed through the nonlinearity exactly, while the covariance is approximately
passed through a linearized version of the function.

Typically, the operating point of the linearization process is the mean of the PDF.
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Linearization

Figure: One-dimensional Gaussian PDF transformed through a deterministic nonlinear function, g(·). In
the example, we linearize the nonlinearity to propagate the variance approximately.
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Linearization

The linearization method is highly inaccurate because

The outcome of passing a Gaussian PDF through a nonlinear function will not be another
Gaussian PDF. By keeping only the mean and covariance of the posterior PDF, we are
approximating the posterior (by throwing away higher statistical moments).

We are approximating the covariance of the true output PDF by linearizing the nonlinear
function.

The operating point about which we linearize the nonlinear function is often not the true
mean of the prior PDF, but rather our estimate of the mean of the input PDF. This is an
approximation that introduces error.

We are approximating the mean of the true output PDF by simply passing the mean of
the prior PDF through the nonlinear function. This does not represent the true mean of
the output.

Furthermore, another disadvantage is that

We need to be able to either calculate the Jacobian of the nonlinearity in closed form, or
compute it numerically (which introduces yet another approximation).
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Linearization

Advantages of the linearization method, include

If the function is only slightly nonlinear, and the input PDF is Gaussian, the linearization
method is very simple to understand and quick to implement.

The procedure is reversible (if the nonlinearity is locally invertible). This means we can
recover the input PDF exactly by passing the output PDF through the inverse of the
nonlinearity (using the same linearization procedure).

This is not true for all methods discussed, and it is not applicable to the sigmapoint
(unscented) transformation (to follow).
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Sigmapoint(Unscented) Transformation

The Sigmapoint(unscented) Transformation acts as the “compromise” between the expensive
accuracy of the Monte Carlo method and the speed and inaccuracy of the linearization method.
The sigmapoint transformation (or unscented transformation) is a family of
transformations.

Figure: One-dimensional Gaussian PDF transformed through a deterministic nonlinear function, g(·).
Here the basic sigmapoint(unscented) transformation is used in which only 2 deterministic samples (one
on each side of the mean) approximate the input density.
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Sigmapoint(Unscented) Transformation

In general, a version of the sigmapoint (SP), or unscented, transformation is used that includes
one additional sample beyond the basic version at the mean of the input density. The steps are
Step 1. A set of 2L+ 1 sigmapoints is computed from the input density N (µx ,Σxx)

LLT = Σxx , (Cholesky decomposition, L lower-triangular) (65)

x0 = µx (66)

xi = µx +
√
L+ κcoliL, i = 1...L (67)

xi+L = µx −
√
L+ κcoliL, i = 1...L (68)

where L = dim(µx) and

µx =
2L∑
i=0

aixi , Σxx =
2L∑
i=0

ai (xi − µx )(xi − µx )
T (69)

ai =

{
κ

L+κ
, i = 0

1
2

1
L+κ

, otherwise
(70)

with ai summing up to 1.
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Sigmapoint(Unscented) Transformation

Step 2. Each of the sigmapoints is individually passed through the nonlinearity, g(·)

yi = g(xi ), i = 0...2L (71)

Step 3. The mean of the output density, µy , is computed as

µy =
2L∑
i=0

ai , yi (72)

Step 4. The covariance of the output density, Σyy , is computed as

Σyy =
2L∑
i=0

ai (yi − µy )(yi − µy )
T (73)

Step 5. The output density, N (µy ,Σyy ), is returned.
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Sigmapoint(Unscented) Transformation

Figure: Two-dimensional (L = 2) Gaussian PDF, whose covariance is displayed using elliptical
equiprobable contours of 1, 2, 3 standard deviations, and the corresponding 2L+ 1 = 5 sigmapoints for
κ = 2.
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Particle Filter

As discussed, drawing a large number of samples is one way to approximate a PDF and by
passing each of them through a nonlinearity and subsequently recombining them on the other
side, we can get an approximation of the transformation of a PDF. This idea is extended to an
approximation of the Bayes filter, called the Particle Filter (PF).

The Particle Filter negotiates nonlinearity and non-Gaussian noise

The particle filter is able to handle non-Gaussian noise, as well as nonlinear observation and
motion models!

The Particle Filter is practical

The particle filter does not require that we have analytical expressions for f(·), g(·), not for
their derivatives. It thus can handle very complex systems, for which maybe we have a
simulator available.
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Particle Filter

There are many different variants of the particle filter.

In the presented approach we rely on sample importance resampling where the so-called
proposal PDF is the prior PDF, in the Bayes filter, propagated forward using the motion
model and the latest motion measurement, vk .

This version of the particle filter is also called the bootstrap algorithm, the condensation
algorithm, or the survival-of-the-fittest algorithm.
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Particle Filter Algorithm

The main steps of the particle filter are
Step 1. Draw M samples from the joint density comprising the prior and the motion noise[

x̂k−1,m

wk,m

]
← p(xk−1|x̌0, v1:k−1, y1:k−1)p(wk) (74)

where m is the unique particle index. In practice, we can draw from each factor of this joint
density separately.
Step 2. Generate a prediction of the posterior PDF by using vk which is done by passing
each prior particle/noise sample through the nonlinear motion model

x̌k,m = f(x̂k−1,m, vk ,wk,m) (75)

These new “predicted states” together approximate the density, p(xk |x̌0, v1:k , y1:k−1)
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Particle Filter Algorithm

Step 3. Correct the posterior PDF by incorporating yk by
step 3a: first assigning a scalar weight, wk,m to each predicted particle based on the
divergence between the desired posterior and the predicted posterior for each particle

wk,m =
p(x̌k,m|x̌0, v1:k , y1:k)
p(x̌k,m|x̌0, v1:k , y1:k−1)

= ηp(yk |x̌k,m) (76)

where η a normalization constant. In practice, this is done by simulating an expected sensor
reading, y̌k,m, using the nonlinear observation model (possibly not available analytically)

y̌k,m = g(x̌k,m, 0) (77)

then we assume p(yk |x̌k,m) = p(yk |y̌k,m), where the right-hand side is a known density (e.g.,
Gaussian).
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Particle Filter Algorithm

step 3b: Resample the posterior based on the weight assigned to each predicted posterior
particle

x̂k,m

resample︷︸︸︷← {x̌k,m,wk,m} (78)

(see next slide)
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Particle Filter Resampling

A key aspect of PF is the need to resample the posterior density according to the weights
assigned to each current sample. One way for achieving this shall be described.
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Particle Filter Resampling

We assume we have M samples and that each of these is assigned an unnormalized weight,
wm ∈ R > 0. From the weights, we create bins with boundaries, βm

βm =

∑m
n=1 wn∑M
ℓ=1 wℓ

(79)

where the βm define the boundaries of M bins on the interval [0, 1] as

0 ≤ β1 ≤ β2 ≤ ... ≤ βM−1 ≤ 1

where we will have βM ≡ 1.
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Particle Filter Resampling

Subsequently, we select a random number, ρ, sampled from a uniform density on [0, 1).

For M iterations we add to the new list of samples, the sample whose bin contains ρ.

At each iteration we step ρ forward by 1/M.

The algorithm guarantees that all bins whose size is greater than 1/M will have sample in
the new list.
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Particle Filter - Practical Considerations

1 How many samples to use? Depends on the specific problem. Typically hundreds of
particles for a low-dimensional problem (e.g, a 2D robot with x = [x , y , θ]).

2 We can dynamically pick the number of particles online using a heuristic sample such as∑
wk,m ≥ wthres (the latter experimentally derived).

3 We do not always need to resample every time we go through the algorithm. We may
delay resampling, but then carry the weights forward to the next iteration.

4 It is always smart to include a subset of samples that are uniformly drwn from the entire
state space. This protects from outlier sensor measurements/vehicle movements.

5 For high-dimensional state estimation problems, PF is expensive. Check for variations.

6 The PF is an “anytime” algorithm analogously to the Monte Carlo method.

7 The Cramér-Rao lower bound (CRLB) is set by the uncertainty in the measurements that
we have available. CRLB is the best we could do.
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Sigmapoint (Unscented) Kalman Filter

The SigmaPoint (or unscented) Kalman Filter (SPKF or UKF) is motivated from the idea to
completely eliminate the step of linearization and instead use the sigmapoint transformation to
pass PDFs through the nonlinear motion and observation models.
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Prediction Step

The prediction step is a fairly straightforward application of the sigmapoint transformation
since we are trying to bring our prior forward in time through the motion model. To that end,
we employ the following steps to go from the prior belief, {x̂k−1, P̂k−1}, to the predicted
belief, {x̌k , P̌k}

Step 1. Both the prior belief and the motion noise have uncertainty, so these are stacked
together

µz =

[
x̂k−1

0

]
, Σzz =

[
P̂k−1 0
0 Qk

]
(80)

where {µz ,Σzz} is still a Gaussian representation. Let L = dim(µz).
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Prediction Step

Step 2. Convert {µz ,Σzz} to a sigmapoint representation (Eqs. repeated)

LLT = Σzz , (Cholesky decomposition, L lower-triangular) (81)

z0 = µz (82)

zi = µz +
√
L+ κcoliL, i = 1...L (83)

zi+L = µz −
√
L+ κcoliL, i = 1...L (84)

Step 3. Unstack each sigmapoint into state and motion noise

zi =

[
x̂k−1,i

wk,i

]
(85)

and pass each sigmapoint through the nonlinear motion model

x̌k,i = f(x̂k−1,i , vk ,wk,i ), i = 0...2L (86)

where the latest input, vk , is required.
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Prediction Step

Step 4. Recombine the transformed sigmapoints into the predicted belief {x̌k , P̌k}

x̌k =
2L∑
i=0

ai x̌k,i (87)

P̌k =
2L∑
i=0

ai (x̌k,i − x̌k)(x̌k,i − x̌k)
T (88)

ai =

{ κ
L+κ , i = 0

1
2

1
L+κ , otherwise

(89)
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Correction Step

Recal that the conditional Gaussian density for xk (i.e., the posterior) takes the form

p(xk |x̌0, v1:k , y0:k) = N

µx ,k +Σxy ,kΣ
−1
yy ,k(yk − µy ,k)︸ ︷︷ ︸
x̂k

,Σxx ,k −Σxy ,kΣ
−1
yy ,kΣyx ,k︸ ︷︷ ︸

P̂k

 (90)

where we x̂k , P̂k are the mean and covariance, respectively. In this form we write the
generalized Gaussian correction-step equations as

Kk = Σxy,kΣ
−1
yy,k (91)

P̂k = P̌k − KkΣ
T
xy,k (92)

x̂k = x̌k + Kk (yk − µy,k ) (93)

and we shall use the SP transformation to derive improved estimates of µy ,k ,Σyy ,k ,Σxy ,k .
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Correction Step

The following steps are involved
Step 1. Both the predicted belief and the observation noise are uncertain so we stack them

µz =

[
x̌k
0

]
, Σzz =

[
P̌k 0
0 Rk

]
(94)

where {µz ,Σzz} is still a Gaussian representation. Let L = dim(µz).
Step 2. Convert {µz ,Σzz} to a sigmapoint representation

LLT = Σzz , (Cholesky decomposition, L lower-triangular) (95)

z0 = µz (96)

zi = µz +
√
L+ κcoliL, i = 1...L (97)

zi+L = µz −
√
L+ κcoliL, i = 1...L (98)
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Correction Step

Step 3. Unstack each sigmapoint into state and observation noise

zi =

[
x̌k,i
nk,i

]
(99)

and pass each sigmapoint through the nonlinear observation model

y̌k,i = g(x̌k,i ,nk,i ) (100)
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Correction Step

Step 4. Recombine the transformed sigmapoints into the desired moments

µy,k =
2L∑
i=0

ai y̌k,i (101)

Σyy,k =
2L∑
i=0

ai (y̌k,i − µy,k )(y̌k,i − µy,k )
T (102)

Σxy,k =
2L∑
i=0

ai (x̌k,i − x̌k )(y̌k,i − µy,k )
T (103)

ai =

{
κ

L+κ
, i = 0

1
2

1
L+κ

, otherwise
(104)

which are plugged into the generalized Gaussian correction-step equations to complete the
correction step.
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Sigmapoint (Unscented) Kalman Filter Advantages

1 It does not require the nonlinear motion and observatiion models in closed form; they can
be black-box functions.

2 It does not require any analytical derivatives

3 It uses only basic linear algebra operations
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Taxonomy of Filters

Let us remind the generally assumed motion and observation models:

motion model: xk = f(xk−1, vk ,wk), k = 1...K

observation model: yk = g(xk ,nk), k = 0...K

where k is the discrete-time index and K its maximum, f the nonlinear motion model, and g
the nonlinear observation model. Estimation as we originallyc considered it is a Non-Linear,
Non-Gaussian problem.
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Taxonomy of Filters

Bayes filter

Bayes filter Bayes filter

(iterated)

Extended

Kalman Filter

(iterated)

Sigmapoint

Kalman Filter

approximate PDFs

as Gaussian 

approximate PDFs

using a large number

of random samples

pass PDFs through 

linearized motion 

and observation models

deterministically sample

PDFs and pass through

nonlinear motion and 

observation models

Figure: Taxonomy of the different filtering methods and their relationships with the Bayes filter.
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Taxonomy of Filters

Figure: Graphical model representation of the Markov processes constituting the Non-Linear,
Non-Gaussian (NLNG) system in Eqs. (14,15).
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Taxonomy of Filters

Markov Process

In the simplest sense, a stochastic process has the Markov property if the conditional
probability density functions (PDFs) of future states of the process, given the present state,
depend only upon the present state, but not only other past states, i.e., they are conditionally
independent of these older states. Such a process is called Markovian or a Markov process.
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Extended Kalman Filter

Classic recursive update equations for the EKF

predictor: P̌k = Fk−1P̂k−1F
T
k−1 +Q′

k

x̌k = f(x̂k−1, vk , 0)

Kalman gain: Kk = P̌kG
T
k (Gk P̌kG

T
k + R′

k)
−1

corrector: P̂k = (1−KkGk)P̌k

x̂k = x̌k +Kk (yk − g(x̌k , 0))︸ ︷︷ ︸
innovation

The update equations allow us to compute
{
x̂k , P̂k

}
from the estimates of the previous

timestep
{
x̂k−1, P̂k−1

}
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Iterated Extended Kalman Filter

IEKF revisits the correction step of EKF which then takes the form

Kk = P̌kG
T
k (Gk P̌kG

T
k + R′

k)
−1

P̂k = (1−KkGk)P̌k

x̂k = x̌k +Kk(yk − yop,k − Gk(x̌k − xop,k))

these equations are very similar to the classical Kalman gain and corrector equations with the
only difference being the operating point of the linearization.
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Iterated Extended Kalman Filter

Relationship between the EKF/IEKF estimate and the full Bayesian posterior?

At the level of the correction step at a single timestep, the IEKF estimate corresponds to a
(local) maximum of the full posterior. In other words, it is a MAP estimate. However, since
the EKF is not iterated, it can be far from a local maximum. In fact, there is very little we can
say about its relationship to the full posterior.
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Particle Filter Algorithm

Step 1. Draw M samples from the joint density comprising the prior and the motion noise[
x̂k−1,m

wk,m

]
← p(xk−1|x̌0, v1:k−1, y1:k−1)p(wk)

where m is the unique particle index.
Step 2. Generate a prediction of the posterior PDF by using vk (by passing each prior
particle/noise sample through the nonlinear motion model)

x̌k,m = f(x̂k−1,m, vk ,wk,m)

These new “predicted states” together approximate the density, p(xk |x̌0, v1:k , y1:k−1)
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Particle Filter

Step 3. Correct the posterior PDF by incorporating yk by
step 3a: first assigning a scalar weight, wk,m to each predicted particle based on the
divergence between the desired posterior and the predicted posterior for each particle

wk,m =
p(x̌k,m|x̌0, v1:k , y1:k)
p(x̌k,m|x̌0, v1:k , y1:k−1)

= ηp(yk |x̌k,m)

η a normalization constant. This is done by simulating an expected sensor reading, y̌k,m

y̌k,m = g(x̌k,m, 0)

then we assume p(yk |x̌k,m) = p(yk |y̌k,m).
step 3b: Resample the posterior based on the weight assigned to each predicted posterior
particle

x̂k,m

resample︷︸︸︷← {x̌k,m,wk,m}
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Sigmapoint (Unscented) Kalman Filter

Prediction step: We employ the following steps to go from the prior belief, {x̂k−1, P̂k−1}, to
the predicted belief, {x̌k , P̌k}

Step 1. Both the prior belief and the motion noise have uncertainty, so these are stacked
together

µz =

[
x̂k−1

0

]
, Σzz =

[
P̂k−1 0
0 Qk

]
where {µz ,Σzz} is still a Gaussian representation. Let L = dim(µz).
Step 2. Convert {µz ,Σzz} to a sigmapoint representation (Eqs. repeated)

LLT = Σzz , (Cholesky decomposition, L lower-triangular)

z0 = µz

zi = µz +
√
L+ κcoliL, i = 1...L

zi+L = µz −
√
L+ κcoliL, i = 1...L
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Sigmapoint (Unscented) Kalman Filter

Step 3. Unstack each sigmapoint into state and motion noise

zi =

[
x̂k−1,i

wk,i

]

and pass each sigmapoint through the nonlinear motion model

x̌k,i = f(x̂k−1,i , vk ,wk,i ), i = 0...2L

where the latest input, vk , is required.
Step 4. Recombine the transformed sigmapoints into the predicted belief {x̌k , P̌k}

x̌k =
2L∑
i=0

ai x̌k,i , P̌k =
2L∑
i=0

ai (x̌k,i − x̌k )(x̌k,i − x̌k )
T , ai =

{
κ

L+κ
, i = 0, 1

2
1

L+κ
, otherwise
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Sigmapoint (Unscented) Kalman Filter

Correction step: The following steps are involved Step 1. Both the predicted belief and the
observation noise are uncertain so we stack them

µz =

[
x̌k
0

]
, Σzz =

[
P̌k 0
0 Rk

]
where {µz ,Σzz} is still a Gaussian representation. Let L = dim(µz).
Step 2. Convert {µz ,Σzz} to a sigmapoint representation

LLT = Σzz , (Cholesky decomposition, L lower-triangular)

z0 = µz

zi = µz +
√
L+ κcoliL, i = 1...L

zi+L = µz −
√
L+ κcoliL, i = 1...L
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Sigmapoint (Unscented) Kalman Filter

Step 3. Unstack each sigmapoint into state and observation noise

zi =

[
x̌k,i
nk,i

]

and pass each sigmapoint through the nonlinear observation model

y̌k,i = g(x̌k,i , nk,i )

Step 4. Recombine the transformed sigmapoints into the desired moments

µy,k =
2L∑
i=0

ai y̌k,i , Σyy,k =
2L∑
i=0

ai (y̌k,i − µy,k )(y̌k,i − µy,k )
T (105)

Σxy,k =
2L∑
i=0

ai (x̌k,i − x̌k )(y̌k,i − µy,k )
T , ai =

{
κ

L+κ
, i = 0

1
2

1
L+κ

, otherwise

which are plugged into the generalized Gaussian correction-step equations to complete the
correction step.

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 102 / 103



Thank you

Q&A

Assignments

Other matters
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