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Definitions

Let x be a random variable distributed over a Probability Density Function (PDF) p(x) over
the interval [a, b]. Then we write: ∫ b

a
p(x)dx = 1 (1)

Thus satisfying the axiom of total probability.

For any two c, d within [a, b] the probability that x lies within c and d , Pr(c ≤ x ≤ d) takes
the form:

Pr(c ≤ x ≤ d) =

∫ d

c
p(x)dx (2)
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Definitions

To introduce a conditional variable, let p(x |y) be a PDF over x ∈ [a, b] conditioned over
y ∈ [r , s] such that:

(∀y)
∫ b

a
p(x |y)dx = 1 (3)

For the case of N-dimensional continous variables let x = (x1, x2, ..., xN) with xi ∈ [ai , bi ]. We
then denote p(x) or p(x1, x2, ..., xN). The axiom of total probability requires:∫ b

a
p(x)dx =

∫ bN

aN

...

∫ b2

a2

∫ b1

a1

p(x1, x2, ..., xN)dx1dx2...dxN = 1 (4)

where a = (a1, a,..., aN) and b = (b1, b2, ..., bN).
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Bayes’ Rule and Inference

The Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y)

(5)

Allows us to infer the posterior or likelihood of the state given the measurements, p(x|y), if
we have a prior PDF over the state p(x) and the sensor model p(y|x).

The denominator is computed by marginalization

p(y) = p(y)

∫
p(x|y)dx =

∫
p(x|y)p(y)dx =

∫
p(x, y)dx =

∫
p(y|x)p(x)dx (6)

We thus write:

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

(7)
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Moments

Moments of PDFs represent most notable characteristics.

The zeroth probability moment is always 1 (axiom of total probability).

The first probability moment is known as the mean µ

µ = E [x] =

∫
xp(x)dx (8)

where E [·] denotes the expectation operator. For a general matrix function F(x) we write

E [F(x)] =

∫
F(x)p(x)dx (9)
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Moments

The second probability moment is called the covariance matrix Σ

Σ = E [(x− µ)(x− µ)T ] (10)

The next two moments are called skewness and kurtosis.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry.

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a
normal distribution.
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Sample Mean and Covariance

Let x be a random variable with PDF p(x). We can draw samples from this density

xmeas ← p(x) (11)

Taking N such samples allow us to derive the sample mean and sample covariance

µmeas =
1

N

N∑
i=1

xi ,meas

Σmeas =
1

N−1

∑N
i=1(xi ,meas − µmeas)(xi ,meas − µmeas)

T (12)

Normalization term N − 1, rather than N, is called the Bessel’s correction and reflects the
fact that the sample covariance uses the difference of the measurements against the
sample mean.
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Statistically Independent, Uncorrelated

Let x, y be two random variables.

We say that x, y are statistically independent if

p(x, y) = p(x)p(y) (13)

We say that x, y are uncorrelated if

E [xyT ] = E [x]E [y]T (14)

If the variables are statistically independent this implies that they are also uncorrelated.

The reverse is not always true.
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Normalized Product

If p1(x), p2(x) are two PDFs of x, the normalized product p(x) is formulated as

p(x) = ηp1(x)p2(x), η =

(∫
p1(x)p2(x)dx

)−1

(15)

with η normalization constant ensuring that p(x) satisfies the axiom of total probability.

The normalized product can be used to fuse independent estimates of a variable under the
assumption of a uniform prior

p(x|y1, y2) = ηp(x|y1)p(x|y2), η =
p(y1)p(y2)

p(y1, y2)p(x)
(16)

Note: If we let the prior p(x) be uniform for all values of x then η is also a constant.
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Shannon and Mutal Information

To assess our confidence for the estimate of the mean of a PDF we can use the negative
entropy or Shannon information H

H(x) = −E [ln p(x)] = −
∫

p(x) ln p(x)dx (17)

To measure how much knowing one of the variables, reduces the uncertainty for the other we
can use the mutual information I (x, y) between two random variables x, y

I (x, y) = E

[
ln

(
p(x, y)

p(x)p(y)

)]
=

∫∫
p(x, y) ln

(
p(x, y)

p(x)p(y)

)
dxdy (18)

When x, y are statistically independent, I (x, y) = 0.

When x, y are statistically dependent, I (x, y) ≥ 0 and I (x, y) = H(x) + H(y)− H(x, y)
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Cramér-Rao Lower Bound and Fisher Information

Considering a deterministic parameter θ that influences a random variable x, p(x|θ) and a
sample xmeas ← p(x|θ), then the Cramér-Rao lower bound (CRLB) says that the covariance of
any unbiased estimate θ̂ (based on xmeas) of the deterministic parameter θ is bounded by the
Fisher Information Matrix I(x|θ)

cov(θ̂|xmeas) = E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ I−1(x|θ) (19)

The Fisher Information Matrix takes the form

I(x|θ) = E

[(
∂ ln p(x|θ)

∂θ

)T (
∂ ln p(x|θ

θθ

)]
(20)

Thus, CRLB sets a fundamental limit on how certain we can be about an estimate of a
parameter, given our measurements.
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Definitions

Throughout most of our work in state estimation for robotics we will be working with Gaussian
PDFs.
One-dimensional Gaussian PDF over random variable x ∈ R

p(x |µ, σ2) =
1√
2πσ2

exp

(
−1

2

(x − µ)2

σ2

)
(21)

where µ, σ2 are the mean and variance respectively (σ is called the standard deviation).
Multi-variate Gaussian PDF over random variable x ∈ RN

p(x|µ,Σ) =
1√

(2π)N detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(22)

where µ ∈ RN ,Σ ∈ RN×N are the mean and covariance matrix respectively (symmetric,
positive-definite).
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Definitions

Figure: Example of 1D and 2D Gaussian probability densities.
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Definitions

Accordingly,

µ = E [x] =

∫ ∞

−∞
x

1√
(2π)N detΣ

exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
dx (23)

Σ = E [(x− µ)(x− µ)T ] =

∫ ∞

−∞
(x− µ)(x− µ)T

1√
(2π)N detΣ

exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
dx (24)

We also write that x is normally distributed

x ∼ N (µ,Σ) (25)

We also say that a random vaeriable is standard normally distributed if

x ∼ N (0, 1) (26)

where 1 is an N × N identity matrix.
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Isserli’s Theorem

Isserli’s theorem allows to compute certain higher-order moments of a Gaussian random
variable x = (x1, x2, ..., x2M) ∈ R2M . In general, it says that

E [x1x2x3...x2M ] =
∑∏

E [xixj ], (27)

where this implies summing over all distinct ways of partitioning into a product of M pairs.
There are (2M)!/(2MM!) terms in the sum.

With four variables we write

E [xixjxkxℓ] = E [xixj ]E [xkxℓ] + E [xixk ]E [xjxℓ] + E [xixℓ]E [xjxk ] (28)
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Isserli’s Theorem

Assuming x ∼ N (0,Σ) ∈ RN we will have occasion to compute expressions of the form

E [x(xTx)pxT ] (29)

where p non-negative integer.

For p = 0, it holds that E [xxT ] = Σ

For p = 1, it holds that E [xxTxxT ] = Σ(tr(Σ)1+ 2Σ)

Note that for the scalar case, we have x ∼ N (0, σ2 and thus E [x4] = σ2(σ2 + 2σ2) = 3σ4.
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Isserli’s Theorem

Let us also consider the case where

x =

[
x1
x2

]
∼ N

(
0

[
Σ11 Σ12

Σ21 Σ22

])
, dim(x1) = N1, dim(x2) = N2 (30)

Throughout our work in state estimation, we will need to compute expressions of the form

E [x(xT1 x1)
pxT ], p ∈ N0 (31)

For p = 0, E [xxT ] = Σ
For p = 1 it holds that

E [xxT1 x1x
T ] = Σ

(
tr(Σ11)1+ 2

[
Σ11 Σ12

0 0

])
(32)

Similarly,

E [xxT2 x2x
T ] = Σ

(
tr(Σ22)1+ 2

[
0 0

ΣT
12 Σ22

])
(33)
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Isserli’s Theorem

Accordingly, we have the final check

E [xxTxxT ] = E [x(xT1 x1 + xT2 x2)x
T ] = E [xxT1 x1x

T ] + E [xxT2 x2x
T ] (34)

Furthermore, it holds that

E [xxTAxxT ] = Σ(tr(AΣ)1+ AΣ+ ATΣ) (35)

where A is a compatible square matrix.
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Joint Gaussian PDFs, their Factors, and Inference

We can have a joint Gaussian over a pair of variables (x, y)

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
(36)

with Σyx = ΣT
xy .

Schur complement

Suppose A,B,C,D are respectively p × p, p × q, q × p, q × q, p, q ∈ N0 matrices of complex
numbers. Let matrix M with dimensions (p + q)× (p + q)

M =

[
A B
C D

]
(37)

the Schur complements of A in M are the matrices of the form S = D− CaB, where a is the
generalized inverse of A. If A is invertible, this is S = D− CA−1B
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Joint Gaussian PDFs, their Factors, and Inference

Breaking a joint density into the product of two factors p(x, y) = p(x|y)p(y) we can work out
the details for the joint Gaussian using the Schur complement. It turns out that:

p(x, y) = p(x|y)p(y) (38)

p(x|y) = N (µx +ΣxyΣ
−1
yy (y − µy ),Σxx −ΣxyΣ

−1
yy Σyx) (39)

p(y) = (µy ,Σyy ) (40)

with both p(x|y), p(y) are Gaussian PDFs.

If we know the value of y (i.e., it is measured), then we can work out the likelihood of x by
computing p(x|y) using Eq. 39. This is in fact the cornerstone of Gaussian Inference: We start
with a prior about our state, x ∼ N (µx ,Σxx) and then narrow down based on some
measurements ymeas . In Eq. 39 we see that both the mean µx and the covariance Σxx are
adjusted.
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Statistically Independent, Uncorrelated

For Gaussian PDFs, statistically independent variables are also uncorrelated and uncorrelated
variables are also statistically independent.
Assuming statistical independence, p(x, y) = p(x)p(y) and so
p(x|y) = p(x) = N (µx ,Σxx). This implies

ΣxyΣ
−1
yy (y − µy ) = 0 (41)

ΣxyΣ
−1
yy Σyx = 0 (42)

thus, also Σxy = 0. Furthermore, since

Σxy = E [(x− µx)(y − µy )
T ] = E [xyT ]− E [x]E [y]T (43)

we conclude the uncorrelated condition

E [xyT ] = E [x]E [y]T (44)
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Linear Change of Variables

Suppose we have a Gaussian random variable x ∈ RN ∼ N (µx ,Σxx) and that we have a
second random variable y ∈ RM related to x through the linear map

y = Gx, G ∈ RM×N (const) (45)

With respect to the statistical properties of y it holds that

µy = E [y] = E [Gx] = GE [x] = Gµx (46)

Σyy = E [(y − µy )(y − µy )
T ] = GE [(x− µx)(x− µx)

T ]GT = GΣxxG
T (47)

and thus we write that y ∼ N (µy ,Σyy ) = N (Gµx ,GΣxxGT ).
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Linear Change of Variables

An alternative way to conclude the same is through a change of variables. We assume that the
linear map is injective (that is that two values of x cannot map to a single y value) and in fact
G is invertible (thus also M = N). By the axiom of total probability∫ ∞

−∞
p(x)dx = 1 (48)

A small volume of x is related to a small volume y by dy = | detG|dx. We can then make a
substitution of variables to have

1 =

∫ ∞

−∞
p(x)dx = ... =

∫ ∞

−∞

1√
(2π)N det(GΣxxGT )

exp

(
−

1

2
(y − Gµx )

T (GΣxxG
T )−1(y − Gµx )

)
dy (49)

where we have µy = Gµx ,Σyy = GΣxxGT as derived before.
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Linear Change of Variables

Likewise, we can derive the statistics of x from y given that this linear mapping is invertible.
This however is a bit trickier as the resulting covariance of x will blow up since we are dilating
to a larger space. To overcome this problem, we switch to information form. Let

u = Σ−1
yy y (50)

we have
u ∼ N (Σ−1

yy µy ,Σ
−1
yy ) (51)

Likewise, let
v = Σ−1

xx x (52)

we have
v ∼ N (Σ−1

xx µx ,Σ
−1
xx ) (53)

Kostas Alexis (NTNU) Aerial Robotic Autonomy: Methods and Systems 28 / 51



Linear Change of Variables

Since the mapping from y to x is not unique, we need to specify what we want to do. One
choice is

v = GTu ⇔ Σ−1
xx x = GTΣ−1

yy y (54)

then we take the expectations

Σ−1
xx µx = E [v] = GTE [u] = GTΣ−1

yy µy (55)

Σ−1
xx = E [(v −Σ−1

xx µx)(−Σ−1
xx µx)

T ] = GTΣ−1
yy G (56)

Note: if Σ−1
xx is not full rank then we cannot recover Σxx ,µx and must keep them in

information form. However, multiple such estimates can be fused together.
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Normalized Product of Gaussians

The normalized product of K Gaussian PDFs is also a Gaussian PDF

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
≡ η

K∏
k=1

exp

(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
(57)

where Σ−1 =
∑K

k=1Σ
−1
k , Σ−1µ =

∑N
k=1Σ

−1
k µk , and η is a normalization constant to

enforce the axiom of total probability.

The normalized product of Gaussians comes up when fusing multiple estimates together.
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Figure: Illustrational example
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Normalized Product of Gaussians

We also have that

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
≡ η

K∏
k=1

exp

(
−1

2
(Gkx− µk)

TΣ−1
k (Gkx− µk)

)
(58)

where

Σ−1 =
K∑

k=1

GT
k Σ

−1
k Gk (59)

Σ−1µ =
K∑

k=1

GT
k Σ

−1
k µk (60)

in the case that the matrices, Gk ∈ RMk×N , are present, with Mk ≤ N and η is again a
normalization constant.
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Sherman-Morrison-Woodburry (SMW) Identity

In state estimation, the Sherman-Morrison-Woodburry (SMW) matrix identity(ies) (also called
the matrix inversion lemma) is commonly used. SMW is in fact four identities coming from
the same derivation.

A matrix can be factored into either a lower-diagonal-upper (LDU) or upper-diagonal-lower
(UDL) form: [

A−1 −B
C D

]
=

[
1 0
CA 1

] [
A−1 0
0 D+ CAB

] [
1 −AB
0 1

]
(LDU) (61)

[
A−1 −B
C D

]
=

[
1 −BD−1

0 1

] [
A−1 + BD−1C 0

0 D

] [
1 0

D−1C 1

]
(UDL) (62)
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Sherman-Morrison-Woodburry (SMW) Identity

We then invert each of these forms. For the LDU[
A−1 −B
C D

]−1

=

[
1 AB
0 1

] [
A 0
0 (D+ CAB)−1

] [
1 0
−CA 1

]
⇒ (63)

[
A−1 −B
C D

]−1

=

[
A− AB(D+ CAB)−1CA AB(D+ CAB)−1

−(D+ CAB)−1CA (D+ CAB)−1

]
(64)

For the UDL case[
A−1 −B
C D

]−1

=

[
(A−1 + BD−1C)−1 (A−1 + BD−1C)−1BD−1

−D−1C(A−1 + BD−1C)−1 D−1 −D−1C(A−1 + BD−1C)−1BD−1

]
(65)
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Sherman-Morrison-Woodburry (SMW) Identity

Comparing from Eq. 63 and 64 we conclude the SMW identities:

SMW Identities

(A−1 + BD−1C)−1 ≡ A− AB(D+ CAB)−1CA (66)

(D+ CAB)−1 ≡ D−1 −D−1C(A−1 + BD−1C)−1BD−1 (67)

AB(D+ CAB)−1 ≡ (A−1 + BD−1C)−1BD−1 (68)

(D+ CAB)−1CA ≡ D−1C(A−1 + BD−1C)−1 (69)

The SMW identities are frequently used when manipulating expressions involving covariance
matrices of Gaussian PDFs.
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Passing a Gaussian through a Nonlinearity

We can examine the process of passing a Gaussian PDF through a stochastic nonlinearity,
namely computing

p(y) =

∫ ∞

−∞
p(y|x)p(x)dx, p(y|x) = N (g(x),R), p(x) = N (µx ,Σxx) (70)

and g(·), :x→ y is a nonlinear map that is then corrupted by zero-mean Gaussian noise with
covariance R.

We shall require this type of stochastic nonlinearity when modeling sensors.

Passing a Gaussian through this type of function is required when performing full
Bayesian inference.
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Passing a Gaussian through a Nonlinearity

Scalar Deterministic Case via Change of Variables

Let a Gaussian random variable x ∈ R, x ∼ N (0, σ2), i.e., p(x) = 1√
2πσ2

exp
(
−1

2
x2

σ2

)
.

Consider the nonlinear mapping

y = exp(x)→ x = ln(y) (71)

The infinitesimal integration volumes for x , y are then related by

dy = exp(x)dx or dx =
1

y
dy (72)

According to the axiom of total probability

1 =

∫ ∞

−∞
p(x)dx =

∫ ∞

−∞

1√
2πσ2

exp

(
−1

2

x2

σ2

)
dx (73)
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Passing a Gaussian through a Nonlinearity

=

∫ ∞

0

1√
2πσ2

exp

(
−1

2

(ln(y))2

σ2

)
1

y
dy =

∫ ∞

0
p(y)dy (74)

giving the exact expression for p(y) which is visualized in the Figure below.
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Figure: The PDF, p(y), resulting from p(x) being Gaussian PDF and passing through the nonlinearity
y = exp(x).

Note that p(y) is no longer Gaussian owing to the nonlinear change of variables.
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Passing a Gaussian through a Nonlinearity

General Case via Linearization: Such analytical calculation -as before - is not generally
possible. Moreover, when the nonlinearity is stochastic (i.e., R > 0), our mapping will never
be invertible due to the extra input coming from the noise. One way to solve for processing
the nonlinear effect is through linearization. We linearize the nonlinear map such that

g(x) ≈ µy + G(x− µx)

G = ∂g(x)
∂x

∣∣∣
x=µx

(75)

µy = g(µx)

where G is the Jacobian pf g(·) with respect to x. This process allows us to pass the Gaussian
through the linearized function in closed form and it is thus an approximation that works well
for mildly nonlinear maps.
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Passing a Gaussian through a Nonlinearity

Returning to

p(y) =

∫ ∞

−∞
p(y|x)p(x)dx (76)

we have that

p(y) = η

∫ ∞

−∞
exp

(
−
1

2
(y − (µy + G(x− µx )))

TR−1(y − (µy + G(x− µx )))

)
(77)

× exp

(
−
1

2
(x− µx )

TΣ−1
xx (x− µx )

)
dx

= η exp

(
−
1

2
(y − µy )

TR−1(y − µy )

)∫ ∞

−∞
exp

(
−
1

2
(x− µx )

T (Σ−1
xx + GTR−1G)(x− µx )

)
(78)

× exp
(
(y − µy )

TR−1G(x− µx )
)
dx
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Passing a Gaussian through a Nonlinearity

After manipulation

p(y) = ρ exp

(
−1

2
(y − µy )

T (R−1 − R−1G(GTR−1G+Σ−1
xx )

−1GTR−1)(y − µy )

)
(79)

By exploiting the SMW inequalities it turns out

p(y) = ρ

(
−1

2
(y − µy )

T (R+ GΣxxG
T )−1(y − µy )

)
(80)

wherre ρ is the new normalization constant. Accordingly we write

y ∼ N (µy ,Σyy ) = N (g(µx),R+ GΣxxG
T ) (81)
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Shannon Information of a Gaussian

Shannon information of a Gaussian PDF

H(x) = −
∫ ∞

−∞
p(x) ln p(x)dx

=
1

2
ln
(
(2π)N detΣ

)
+

1

2
E
[
(x− µ)TΣ−1(x− µ)

]
(82)

where the second term is written as an expectation and in fact corresponds to a squared
Mahalanobis distance.

The Mahalanobis distance is a measure of the distance between a point P and a distribution
D, introduced by P. C. Mahalanobis in 1936.
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Shannon Information of a Gaussian

Mahalanobis distance

For an observation x from a set of observations with mean µ and covariance matrix Σ the
Mahalanobis distance is defined as

DM(x) =
√
(x− µ)TΣ−1(x− µ) (83)

The Mahalanobis distance can also be defined as the dissemilarity between two vectors x, y, of
the same distribution with covariance Σ, as

dM(x, y) =
√

(x− y)TΣ−1(x− y) (84)

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the
Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is
called a standardized Euclidean distance.
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Shannon Information of a Gaussian

The quadratic function inside the expectation in H(x) can be written as

(x− µ)TΣ−1(x− µ) = tr(Σ−1(x− µ)(x− µ)T ) (85)

Accordingly it can be shown that

E [(x− µ)TΣ−1(x− µ)] = tr(E [Σ−1(x− µ)(x− µ)T ] = N (86)

Substituting back to into the expression for Shannon information

H(x) =
1

2
ln
(
(2πe)N detΣ

)
(87)

which is purely a function of the covariance matrix Σ of the Gaussian PDF.

Geometric interpretation:
√
detΣ is proportional to the volume of the uncertainty ellipsoid

formed by the Gaussian.
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Mutual Information of a Joint Gaussian PDF

Let the joint Gaussian for variables x ∈ RN , y ∈ RM

p(x, y) = N (µ,Σ) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
(88)

It can be shown that the mutual information for the joint Gaussian is

I (x, y) = −1

2
ln

(
detΣ

detΣxx detΣyy

)
(89)

And by further processing it turns out that

I (x, y) = −1

2
ln det(1−Σ−1

xx ΣxyΣ
−1
yy Σyx) = (90)

= −1

2
ln det(1−Σ−1

yy ΣyxΣ
−1
xx Σxy ) (91)

The two forms above are equivalent based on Sylvester’s determinant theorem which states
that det(1− AB) = det(1− BA) even when A,B are not square.
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Cramér-Rao Lower Bound for Gaussian PDFs

Let K samples (measurements) xmeas,k ∈ RN drawn from a Gaussian PDF. The K statistically
independent random variables associated with these measurements are

(∀)xk ∼ N (µ,Σ) (92)

Due to statistical independence, it holds that E (xk − µ)(xℓ − µ)T ] = 0, k ̸= ℓ. It can be
shown that the Fisher Information Matrix takes the form

I (x|µ) = KΣ−1 (93)

Thus, the CRLB says

cov(x̂|xmeas,1, ..., xmeas,K ) ≥
1

K
Σ (94)

i.e., the more measurements, the smaller the lower limit of the uncertainty in the estimate.
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Cramér-Rao Lower Bound for Gaussian PDFs

Note that in computing the CRLB there was no need to specify the form of the unbiased
estimator. The CRLB is the lower bound for any unbiased estimator. An estimator that
performs exactly at the CRLB can be found

x̂ =
1

K

K∑
k=1

xmeas,k (95)

where

E [x̂] = E

[
1

K

k∑
k=1

xk

]
=

1

K

K∑
k=1

E [xk ] =
1

K

K∑
k=1

µ = µ (96)

cov(x̂|xmeas,1, ..., xmeas,K ) = E [(x̂− µ)(x̂− µ)T ] = (97)

= E

( 1

K

K∑
k=1

xk − µ)

)(
1

K

K∑
k=1

xk − µ

)T
 =

1

K
Σ

which is exactly at the CRLB.
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Gaussian Processes

We denote a Gaussian random variable x ∈ RN

x ∼ N (µ,Σ) (98)

we use this type of random variable extensively to represent discrete-time quantities.

To represent state quantities that are continuous functions of time, t, we introduce Gaussian
Processes (GPs). For GPs we say that there is a mean function, µ(t), and a covariance
function, Σ(t, t ′).

The whole trajectory is viewed as a single variable belonging to a class of functions.

The closer a function is to the mean function, the more likely it is.

The covariance controls how smooth the function is by describing the correlation between
two times t and t ′.
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Gaussian Processes

x(t) ∼ GP(µ(t),Σ(t, t ′))

Figure: Continuous-time trajectories can be represented using Gaussian processes, which have a mean
function (dark line) and a covariance function (shaded area).
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Gaussian Processes

To indicate that a continuous-time trajectory is a Gaussian Process (GP), we write

x(t) ∼ GP(µ(t),Σ(t, t ′)) (99)

If we consider a variable at a single particular time of interest, τ , we write

x(τ) ∼ N (µ(τ),Σ(τ, τ)) (100)

where Σ(τ, τ) is a simple covariance matrix. We have marginalized out all of the other
instants of time, leaving x(τ) as a usual Gaussian variable.

Zero-mean, White noise process

w(t) ∼ GP(0,Qδ(t − t ′)) (101)

where δ(t) is Dirac’s delta and Q is a power spectral density. This is a stationary noise
process as it depends only on the difference t − t ′.
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