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= Established at January 2016

=» Current Team:

1

Head,

Who we are@e

1

Senior Postdoctoral Researcher, 3 PhD Candidates, 1

Graduate Research Assistant, 2 Undergraduate Researchers

=» From summer 2017: 1

Candidate

more Senior Postdoctoral Researcher and 1 more PhD
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What's our vision@

» From Capek's “R.U.R.” to Asimov’'s “Robot
Visions”, robots are considered perfected
workers. Either in dystopic or utopic future
projections, humanity has envisioned the
dream of a robotized world, a world that work
is conducted by robots. How far away are we?

Robotics can assist  societal needs for
sustainable and scalable growth, quality of life,
scientific exploration and more. Given that we
deal with the challenges involved.

= To do so in large scale, robotic systems have to
be autonomous regarding their navigation,
operation and task handling.

= Avutonomy is the key. Within that, currently
perception and planning are the two urgent
needs.
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Autonomy is the Key

An autonomous robot relies on the robust and
reliable operation and interconnection of its
onboard perception, planning and control
loops.

Navigation

For robust autonomy we search for a tightly
closed perception-planning-control loop. Perception

Therefore, the research of the lab focuses on
these fields simultaneously and aims to
investigate their correlations and
inferdependencies.

Broader goal: Robustly Autonomous Ubiquitous
Robots
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Robot Configuration

How to further couple their desing?

l _ l

Arobot for whicha Localization and Mapping
Path Planning module for Boundary Value Solver is Pipeline
the tasks of: available
- Collision-free Navigation Visual-Inertial
- Inspection and Lol b S Otherwise, reformulate the Visual-LiDAR-Inertial
- Rutonomous Exploration algorithms to control- Possibly GPS-denied
space
Remojé€ Control Interface Mission Results

Robot Real Motion Perception and
e — State Estimation Module

o

’1
Kostas Alexis, Autonomous Robots Lab, University of Nevada, Reno ‘§§§8¥‘S’MO“S@



Research Activities of the lab

With the broader goal being that of robust

Qufonomy, the Speciﬂc research directions are: Exploration and Mapping in Visually-degraded Environments
Preliminary results
In terms of topic C. Papachristos, S. Khattak, F. Mascarich, K. Alexis

Autonomous Navigation, Exploration and Mapping [

Multi-Modal Localization and Mapping in Visually-
degraded Environments

Robust Control Systems
In terms of roboftic systems
Aerial (primarily)

Ground (intelligent transportation systems) Explg:‘;‘i*o':“;"r:)é';";gznRgeﬁseiﬂg‘gA:ﬁ:f:gbots

i
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This material is based upon work supported by the Department of Energy under Award Number [DE-EM0004478]

Maritime Christos Papachristos, Shehryar Khattak, Kostas Alexis

In terms of applications e N e ™
Infrastructure Inspection and Monitoring o SN
Radiation Mapping
Environmental Monitoring
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Autonomous Aerial Robofts: an example

The Problem: An aerial robot is requested to enter an unknown environment, explore
and 3D map if, detect radiation in it and provide the end result to the user. The

environment is visually-degraded and geometrically complex.
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Autonomous Aerial Robofts: an example

The Problem: An aerial robot is requested to enter an unknown environment, explore
and 3D map if, detect radiation in it and provide the end result to the user. The

environment is visually-degraded and geometrically complex.

= A combined perception, planning and control problem.

How to further couple their desing?

Arobot for whicha Localization and Mapping
Boundary Value Solver is Pipeline
available
Visual-Inertial
Otherwise, reformulate the Visual-LiDAR-Inertial
almlllllsnumol- Possibly GPS-denied
Remote Control Interface Mission Results

Path Planning Guldance and Perception and
Module l:omrol State Estimation Module

t

Rohot Real Motion
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Perception — Planning — Control

RHEM-Planner
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Aerial Robot

Multi-Modal

Mapping Unit
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High-Level Processing | Low-Level Processing :
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Multi-Modal Localization And Mapping

= Multi-Modal Sensor Fusion for GPS-denied operation
in Degraded Visual Environments

=  Camera systems

= LiDAR/ToF 3D Cameras

= |nertial sensors
System Optimization

= Hardware synchronization for reliable sensor data

association
= Sensor infrinsics and extrinsics calibration RIG/ 2004z [modulo AL
2ms 2ms
= Robust Multi-Modal Localization And Mapping
Sony ICX445| |sony ICX445 ihﬁ;ﬁop
= Accurate data association [camera-to-camerq, 5000K
camera-to-LiDAR] w UsB W USB3 W USB3
o MU Tasic [ mPU | .| |
= Robust state estimation of the robot pose and the map || - visuatmertial odomety |
. = Map representation =1
of the environment “Volumetric mapping | |NTEL NUCSI7RYH [i7:5557U bual Gore €~ 3D Depth
) ) ) ) Additional tasks ;ggg;’s‘;ﬁ’ RAN Sensor
=  Multi-modal sensor fusion that tracks the information || :feihplnine

maftrix of the system allows reliable operation in visually-
degraded environments.
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Exploration and Mapping Path Planning

= Overall problem: The overall problem is that of exploring an unknown bounded 3D volume V£ c
R3, while aiming to minimize the localization and mapping uncertainty as evaluated through a
metric over the robot pose and landmarks probabilistic belief.

= Problem 1: Volumetric Exploration

» Given a bounded volume VE, find a collision free path ¢ starting at an initial configuration &;,,;; € Ethat leads to
identifying the free and occupied parts Vfb;ee and VE. when being executed, such that there does not exist any collision

free configuration from which any piece of VE{Vfb;ee, VE, } could be perceived.

= Problem 2: Localizability-aware Planning

» Given a V™ c VE, find a collision free path o™ starting at an initial configuration &, € £ and ending in a configuration
¢rinal € E that aims to improve the robot’s localization and mapping confidence by following paths of optimized

expected robot pose and tracked landmarks covariance.
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Receding Horizon Exploration
and Mapping Planner
(rhemplanner)

Two-levels
Path Planning paradigm

First Planning Layer

Second Planning Layer

Exploration and Mo

oping Path
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Exploration step
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Exploration step

= Exploration Gain with probabilistic re-observation

ExplorationGain(nf) — ExplorationGain(nkE_l) o
VisibleVolume (M, &) exp(—)\C(U;?_ljk ) +
ReobservationGain(M, P, &) eXp(—)\C(Uf_l,k))

= Aiming to maximize newly explored space and re-observe space with decreased
confidence of being mapped as occupied.
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Jncertainty-aware step
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Uncertainty-aware step

= The robot performs onboard localization and mapping

= For the case of our experiments it performs visual-inertial localization
= The assumptions are:
= Pose, features and their uncertainties are estimated

= Dense, volumetric mapping takes place

= To get an estimate about its pose, it relies on tracking landmarks from its sensor
systems. The system performs odometry in an EKF-fashion and the overall state of the

filter is:
pose, [,
‘ N T
x=|Tq vbyb,cz | py - pypo - pJl
L. ~ S ﬁl
robot states, [ features states, [ ¢
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Uncertainty-aware step

= Belief Propagation: in order to idenftify the paths that minimize the robot uncertainty, a
mechanism to propagate the robot belief about its pose and the tracked features has
to be established.

| State Propagation Step - Equations (3) || Filter Update Step - Equations (4) |
r=—-w r+v+w, yi = bj(w(i;)) + n;
. A 2 -1 N dm
't-;:—wxv-l—f-l—q (g) Hj:Aj(Tr(p’j))E(“j)
= —a(w) By stacking the above terms for all visible features, standard EKF
t_) f = Whyt update step is directly performed to derive the new estimate of the
bu = Why robot belief for its state and the tracked features.
cC =W,
PR— | Notation |
_ e . 0 1 e {"V < - - -
fr; = N (p)ay — [_1 0} N7 () + W, — skew synzmetrlc m?ltl‘lx of a vector, f — proper a(‘:celeratlon
d(pj) measurement, w — rotational rate measurement, f — biased
pj = — ‘u,??:}v / d’ (p;) +wp. corr_ectf-’:d acceleration, w — bias corrected rotational rate, NT(,u) —
projection of a 3D vector onto the 2D tangent space around the
F—=F—_—bs—w bearing vector, g — gravity vector, w, — white Gaussian noise
~ - / / processes, 7 () — pixel coordinates of a feature, b; (7 (f;)) — a
w=w— by, —wy : , “th o : /
A v%c) 2D linear constraint for the j°" feature which is predicted to be
E)V B z(sz) Twhe visible in the current frame with bearing vector fi;
wy = z(w)

Using Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart, “ROVIO: Robust Visual Inertial Odometry
Using a Direct EKF-Based Approach”, IROS 2015
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Uncertainty-aware step

= Uncertainty optimization: to be able to derive which path minimizes the robot
uncertainty about its pose and the tracked landmarks, a metric of how small the
covariance ellipsoid is has to be defined.

‘.V P

= What metric?
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Uncertainty-aware step

= Uncertainty optimization: to be able to derive which path minimizes the robot

uncertainty about its pose and the tracked landmarks, a metric of how small the
covariance ellipsoid is has to be defined.

= D-optimality metric:

Doyt (0™") = exp(log([det(Ty, 5 ()] 1 F14)))
BeliefGain (o))

Dopt(aé\fr)

Broadly: maximize the determinant of the information matrix X'X of

the design. This criterion results in maximizing the differential Shannon
information content of the parameter estimates.
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Explorcn’non and Mapping Path Planning

¢o <current vehicle configuration First Planning Step
» Initialize TE with &,
» gk <0 // Set best exploration gain to zero
Y Npest < No(&p) // Set best exploration node to root

* NE «Number of nodes inTE
» While NE < NE,, or gf,, == 0do

* Incrementallybuild TE by adding ngew(fﬁew)

» NE<NE+1

» if ExplorationGain(nk,,) > g&,., then
» ngew S nTEl‘eW
» gk, < ExplorationGain(nZ,,,)
. E E
* 1if Ny > N7pr then
» Terminate planning

> ofy,nE,, &ry « ExtractBestPathSegment(n,,g;)

*  Sg, < LocalSet(Sgy)
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Explorc’non ana Mappmg Path Planning

»

Propagate robot belief along O'RH

a<1

Second Planning Step

// number of admissible paths

g¥ « BeliefGain(cty)

M M
gbest < YJa

M

M

Opest < ORH
while Nf' < N}, or V(T™) n= @S¢, do

// straight path belief gain

» Incrementally build T™ by adding nfL,, (&new)

* Propagate robot belief from current to planned vertex

* if &yen € Sgp, then

»

»

»

Add new vertex n,]‘{’ew at &gy and connect

a—a+1

o « ExtractBranch(nlL,)
g¥ « BeliefGain(alh)

if g4 < gpese then

» oM gl

M M
v Ibest < Ya

return oM
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Flight Control System

N —1

- T
Model-based approach Jo (X0, U Xrep, Uper) = Y (0 = Xrepk) Ox (56 — Xrep )+
System identification k=0 )

By identifying the parameters of a (k= tre 1) TR“ (ke — ttreg.) +
nonlinear differential equation x = f(x,u) (g —uk—1)" Ra (ug —up—1)+

representing the vehicle dynamics, a
sufficiently accurate model is derived.

Cascaded Flight Control:

Model Predictive Control strategies are
employed for the position control of the
vehicle

(XN - Xref.N) d P (XN - xrc’f.N) :

Fast Nonlinear Model Predictive Control for Multicopter
Attitude Tracking on SO(3)

Mina Kamel, Kostas Alexis, Markus Achtelik and Roland Siegwart

—

o — - !
I"N : "T : r

w hy M P C ? Position tracking without one propeller

Robustly accurate response

Saturated fixed-gain loops ensure fast and
accurate tracking of the attitude
references

—
L

Respects system constraints :
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Uncertainty-aware Receding Horizon
Exploration and Mapping using Aerial Robots

Christos Papachnstos Shehryar Khattak, Kostas Alexis

Initialization
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A Multi-Modal Mapping Unit for Autonomous Robotic
Navigation and Exploration in Visually-degraded Environments

Frank Mascarich, Christos Papachristos, Kostas Alexis

'.’L ROBOTS
This material is based upon work supported by the Department of Energy under Award Number [DE-EM0004478] L AB



Multiple Aerial Robotic Configurations

Different aerial robot configurations are designed to address the specific challenges
of different applications and environments.

Our lab develops multirotor and fixed-wing vehicles while carries experiences from
Solar-powered UAV design and convertible systems (work at ETH Zurich)

AtlantileC-=0lar

AtlantikSolar 2 UAV
Flight Endurance Record Attempt

Test Flight #5
July 14th-17th 2015
Rafz, Switzerland

{ I\
| 5
[ 4]
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Robots on the Ground

Plaonned robotic research aims to address challenges related to autonomous
transportation systems and legged robofic autonomy.

Extension of our closed Perception-Planning-Control research approach

Preliminary Results on Multi-modal fusion for
Autonomous Vehicle Localization
- Garage Navigation / Fused Map

;m

o
AUTONOMOUS
O L ROBOTS
LAB
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New Initiative: Intelligent Mobility

Driverless cars are “indicafive examples” of how N
robots can become ubiquitous.

But for such robots to be able and be trusted to
operate autonomously in our cities, the challenges
in perception, planning, control and multi-robot
collaboration have to be robustly addressed.

The Intelligent Mobility project is a university
initiative that reaches to multiple collaborations
locally, nationally and internationally.

Specifics:

= Goal: Enhance the safety and systematicity of public
transportation  systems  through autonomous
technologies. Pave the way towards autonomous
public transportation.

= Testing: Sierra Spirit Route of the RTC (vehicle
performing its normal operation)
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Marine Roboftics

= Maritime robotics have an exciting set of
possible applications.

= Among others related to the protection of
our water ecosystemes.

= |n collaboration with the department of
biology we investigate the development
of a robotic boat that performs
automated  algoe  detection  and
mapping for Lake Tahoe.

= Combined perception system:

= Above water. Large baseline stereo, IMU,
GPS

= Underwater: Camera and illumination
system to detect algae based on its
specific spectrum response.

Kostas Alexis, Autonomous Robots Lab, University of Nevada, Reno ‘§§§8¥‘§”O“S IN{
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Robots in the Wild

= Experiments in the laboratory is how roboftic technology gets verified and improved.
But the natural environment of robofts is out in the wild.

= One of the most fundamental directions of our work is related to field evaluation. Field
robotics research is the key for systems to be optimized and for the society to see the
benefits and abilities of robotics technology.
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Exploration and Mapping in Visually-degraded Environments
Preliminary results

C. Papachristos, S. Khattak, F. Mascarich, K. Alexis

AUTONOMOUS
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Combined roving and flying robots to characterize
DOE-EM facilities.

Identification and semantic classification of tanks,
pipes, and other important structures to intelligently
focus the robot exploration and inspection tasks.

Radiation, chemical, and heat spatial maps are
fused with 3D models of the environment

Integrated planning and multi-modal perception for
comprehensive mapping of nuclear facilities.

Augmented exploration-planning to account for the
radiation, chemical, and heat estimates.

Coordination of aerial and ground robots to
maximize the capabilities of both platforms.

Demonstration in DOE-EM relevant, nuclear analog
facilities towards advanced technology readiness.

Course curriculum development and K-16 outreach.

Collaboration with nuclear engineering pioneers
(Taylor Wilson)

Multi-modal characterization of Nuclear Sites

it = |
xploration & fnspecﬁon Semantically-enhanced Active Perception Loop
ies-based Expl Behavi

L Yy
Guaranteed Reconstruction Fidelity & High-C
Semantically- RadBots

: enhanced '". ik
v Active Perception - [0 - 3
1 > a a

J; command " : : ‘;*“
) | e cl O@ a 4

/ Semantically enhanced, current robot belief and propagation model
Previously Unknown or —
Partially known Environment ' D ion & spatial distribution of high- q ials & emitting sources ;

Result: High-Fidelity 3D, RadChem
and Thermal Multi-Modal Map

USER: Explore
Inspect

Source Detecti
ocalizatio

Carnegie Mellon University [ University of Nevada, Reno



Educational Activities
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Educational Activities

CS491/691: Autonomous Mobile
Robot Design

Aerial robot dvna Robot dynamics & Kinematics Education on the
State estimation operational aspects of

State estimation Unmanned Aerial Vehicles.

Simultaneous Localization and

Mapping Introduction to basic
Motion planning Robot onirol oerodyngmiqs,
communication systems and
more.

Flight control

Partially project-based Path planning

Fully project-based In collaboration with Insitu

Robotics Short Seminar series

Topic-specific talks with invited
colleagues from the UNR, other
academic insfifutions or the Robot projecfs for school

industry. stfudents and community
colleges

Online examples and videos
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The Autonomous Robots Arenad

10 Vicon Vantage V8 Motion Capture System
cameras and the Tracker Software.

"""I nnnnnnnnnnnnnn

15x7xbm  theoretical motion-capture enabled
volume. Sub-mm and Sub-degree accuracy.

14x6.5x4m actual robust operation for 2+ more
tracking and gap within the volume.

A main computer running the official software. A | T
powerful computer running ROS to support eosy
robot integration.

Mock-ups installed inside for challenging B
experiments (more than 300boxes to create
different geometric forms.

Three separate networking options.

Visual-light cameras also and synchronized

Kostas Alexis, Autonomous Robots Lab, University of Nevada, Reno ‘A BOTS O“@



Open Source contributions

= Open Source Code:

= Structural Inspection Planner:

» Nhitps://github.com/ethz-asl/StructurallinspectionPlanner

=» Next-Best-View Planner:

» hitps://qgithub.com/ethz-asl/nbvplanner

» Receding Horizon Exploration and Mapping Planner:

» hitps://qithub.com/unr-arl/rhemplanner

=» Robust Model Predictive Control

» hitps://qithub.com/unr-arl/rmpc_mav

= Dubins Airplane Solver

» Nhitps://qithub.com/unr-arl/DubinsAirplane

= Motion Analysis Cortex ROS Bridge

» hitps://qgithub.com/unr-arl/cortex ros bridge

¥
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https://github.com/ethz-asl/StructuralInspectionPlanner
https://github.com/ethz-asl/nbvplanner
https://github.com/unr-arl/rhemplanner
https://github.com/unr-arl/rmpc_mav
https://github.com/unr-arl/DubinsAirplane
https://github.com/unr-arl/cortex_ros_bridge

= Established at January 2016

=» Current Team:

1
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Head,
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=» From summer 2017: 1
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