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Constituents of Autonomy
 Robotic Autonomy:

The ability to operate without the need for human action and reasoning and make own choices.

 Design sequence of 
moves that get it from 
A to B.

 Adhere by rules (e.g. 
avoid collisions).

 Optimize reponse
and guarantee 
constraints.

 Exploit the best the 
robot has to offer.

 Robot Configuration has 
to allow operation in 
specific mission profile.

 Onboard equipment 
have to enable it too.

 Robust State Estimation 
required for ego-
perception.

 Exteroceptive perception 
required to understand 
the environment.

The baseline for Autonomous Robots
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Constituents of Autonomy
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 Automatic Control:
Autonomous Mobile Robot has to be in control of its own motion!

 No reliance on remote control / 
human teleoperation.

 The case for all robots, up to
an extent.

 Depth & Complexity depend on 
specific platform, and specific 
application.



Constituents of Autonomy
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 Automatic Control:
The challenging case of Aerial Robots and their Control.

 Need to stay airborne!

 Particularly fast dynamics (for most aerial vehicles).

Multirotor

Fixed-Wing BlimpHelicopter



Constituents of Autonomy
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 Automatic Control:
Multirotor Aerial Robot – 6-DoF Control Principles

Attitude Control:

 Simplest possible case treats the aerial 
robot as a “Rigid Body”.

 Attitude refers to 3D orientation of the 
aerial vehicle.

The Aerial Vehicle is free-floating while airborne:

 Adjusting motor speeds in different combinations can 
generate Rotating Moments.

 The purpose of Attitude Control is to use this principle in 
order to “track” a specific 3D pose.



Constituents of Autonomy
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 Automatic Control:
Multirotor Aerial Robot – 6-DoF Control Principles

Attitude Control:

 PID Control, calculates 
“distance” from desired values.

 Continuously tries to minimize it 
(reference tracking).

Handled by a “low-level” 
Autopilot. Commercially available 
systems offer complete solution:

 Attitude Control @ 200 Hz.

 Motor Driving interface.

 State Estimation.



Constituents of Autonomy
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 Automatic Control:
Multirotor Aerial Robot – 6-DoF Control Principles

Translation Control:

 Simplest possible case treats the aerial 
robot as a “Rigid Body”.

 Translation refers to 3D position of the 
aerial vehicle, and motion velocity 
(forward, sideways, and vertical).

The Aerial Vehicle is free-floating while airborne:

 Adjusting the sum of motor speeds “pulls” the body 
upwards. Adjusting the Attitude orients this “pull / lift” 
force forward / sideways / vertically.

 The purpose of Translation Control is to use this principle 
in order to move to and “track” a specific 3D position.



Constituents of Autonomy
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 Automatic Control:
Multirotor Aerial Robot – 6-DoF Control Principles

Translation Control:

 Model Predictive Control: 
Tries to perform tracking as well. But does 
so in control fashion that is:

 A) Optimal: “Knows” a dynamics model 
of the system model and “predicts” how 
a future sequence of control actions will 
affect it. Chooses the best.

 B) Receding-Horizon: Perform only the first 
action / move in the sequence. Then, it 
repeats the process based on the new 
State Estimates it gets. 

Like a human “Expert Pilot”:
“Predicting” the effect of a sequence of future 

control moves based on the “expected” response. 



Constituents of Autonomy
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 Automatic Control:
Model Predictive Control for Aerial Robots
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 Perception & State Estimation:
Attitude & Heading Reference System

Autonomy demands onboard sensing:

Inertial Sensors

 3D Accelerometers & Gyroscopes.

 Accelerations and Rotational rates.

 Assumptions: a static gravitational field. 

Additional Sensors

 Magnetometer, Barometer, Rangefinder, etc…

 Assumptions: a static magnetic field, 
barometric pressure field, etc.



Constituents of Autonomy
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 Perception & State Estimation:
Attitude & Heading Reference System

Infer 3D Orientation w.r.t Earth’s static reference frame:

 Directly by measuring acceleration components in 
all 3 body axes – But noisy!

 Indirectly by integrating rotational rates around 
body axes – But drifting!

Onboard sensor fusion via Extended Kalman Filtering:

 Combining uncertain estimates from different 
processes: a) Sensor Model, b) System Model allows 
cross-correlation of uncertainties.

 If both are valid up to an extent, then the system’s 
reality must lie “somewhere in-between”.

݌නሾ~	࢒ࢋࢊ࢕ࡹ ݍ tanିଵ	~࢘࢕࢙࢔ࢋࡿݐሿ்݀ݎ െݕ tanିଵ⁄ݖ ݔ ⁄ݖ



Constituents of Autonomy
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 Perception & State Estimation:
Localization and Mapping

Autonomous 3D Position estimation:

 Localization against something (inside a Map). What 
if the Map landmark 3D positions are unknown?

 Mapping of an environment (calculation of 
landmarks’ 3D positions) given robot’s own pose. 
What if not provided?

Chicken & Egg problem of Inference:

 Where am I?

 Where are the things I see?



Constituents of Autonomy
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 Perception & State Estimation:
Localization and Mapping

Where are the things I see?

 A) 3D position of something in a picture 
(camera image pixel to 3D coordinates).

A camera is essentially a bearing sensor, 
everything else is recoverable up to a scale factor.



Constituents of Autonomy
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 Perception & State Estimation:
Localization and Mapping

Where are the things I see?

 B) Understanding we see the same thing 
(frame-to-frame tracking)

Image Features & Descriptors:

 Computing characteristic values a certain 
pixel’s neighborhood allows selection of 
“strong” features for landmarks, and robustly 
finding them again in subsequent frames.



Constituents of Autonomy
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 Perception & State Estimation:
Localization and Mapping

Where am I?

 How have I moved (from frame-to-frame)?

 Visual Odometry.

Use epipolar geometry to recover:

 Structure from Motion.

 Will end up with a solution from both 
problems, localization-&-mapping.

p1j
lj

I1
I2 I3p2j p3j
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 Perception & State Estimation:
Simultaneous Localization And Mapping (SLAM)

Frame-by-frame only will quickly drift!

 Correlation of robot pose uncertainty to
measurement uncertainty (landmark 3D positions).

 Information Fusion of Processes that contain uncertainty. 



Constituents of Autonomy
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 Perception & State Estimation:
Simultaneous Localization And Mapping (SLAM)

What about absolute scale?

 Scale can be estimated frame-to-frame
(relative scale) and tracked.

1 solution: Stereo Visual Odometry

 Known baseline allows to directly estimate scale.

 Have to observe landmark on left & right images.

Left Camera Right Camera
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 Perception & State Estimation:
Simultaneous Localization And Mapping (SLAM)

Inertial Sensor Data have absolute scale too!

 Visual-Inertial Localization.

Velocity and scale become recoverable from 1 landmark and 3 subsequent observations.

(also acceleration data are better than assuming frame-to-frame constant velocity)



Constituents of Autonomy
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 Perception & State Estimation:
Simultaneous Localization And Mapping (SLAM)

Visual-Inertial Localization – Filter-based approach:

 System Model: Propagation of Estimate &
Uncertainty based on Rigid Body model
and accelerometer & gyroscope data.

 Measurement Model: Correction based on 
landmark-states observation (camera-based 
feature detection).



Constituents of Autonomy
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 Perception & State Estimation:
Visual-Inertial Localization

Visual-Inertial Localization:

 Filter-based approach.

 Data are fused based on their 
statistics (noise is ok).

 But data timestamps have to be 
accurate (although data 
themselves not necessarily 
synchronized in their time-of-
acquisition).



Constituents of Autonomy
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 Path-planning:
3D-Reconstruction and Mapping

Stereo Visual - Inertial Localization:

 Reliable stereo camera 
model gives better landmark 
estimation statistics.

 Robot 3D pose estimation is 
improved.

 Stereo depth map 3D world 
projection becomes more 
consistent.



Constituents of Autonomy
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 Path-planning:
3D-Reconstruction and Mapping

Voxelgrid from Pointcloud (octomap)

 Volumetric representation of 
the known environment.

 Makes distinction between 
occupied & free voxels.

 Efficient representation in
memory (octree structure).

 Fast node (voxel) lookup
given its 3D coordinates.
Allows speedy execution of 
checking nodes that intersect with 
given trajectories. 



Constituents of Autonomy
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 Path-planning:
3D-Reconstruction and Mapping

Voxelgrid from Pointcloud (octomap)

 Ray-casting / Ray-checking is the 
process of checking along a 3D 
line segment (ray) if occupied, 
free, or unmapped voxels are 
crossed.

 Checking if a transition from initial 
3D configuration to a desired one 
(waypoint) will encounter an 
obstacle.

 Checking if a 3D landmark lies in 
Line-of-Sight or “blocked”.

 etc…

Ray collision checks for landmark visibility
l1

l2 l3 l4



Constituents of Autonomy
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 Core Path-planning Principles:
Random Sampling

Expanding Random Trees in the known (mapped) and free configuration space.

 Only Collision-free transitions are
permitted for every segment.

 Collision-free navigation along path.



Constituents of Autonomy
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 Core Path-planning Principles:
Receding Horizon approach

 A finite number of path-planning moves (e.g. the first segment only) is performed.

 Real-time feedback from Mapping updates the environment knowledge. Based on this 
updated state, path-planning is re-evaluated.

 The first moves is performed again, with each iteration followed by a new map update.



Constituents of Autonomy
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 The Objective:
Autonomously explore a previously unknown location.

The exploration path planning problem consists in exploring a previously unknown
bounded 3D space ܸ ⊂ ℝଷ. This is to determine which parts of the initially unmapped
space ௨ܸ௡௠ = ܸ are free ௙ܸ௥௘௘ ⊂ ܸ or occupied ௢ܸ௖௖ ⊂ ܸ. The operation is subject to vehicle
kinematic and dynamic constraints, localization uncertainty and limitations of the
employed sensor system with which the space is explored.

 As for most sensors the perception stops at surfaces, hollow spaces or narrow pockets
can sometimes not be explored with a given setup. This residual space is denoted as௥ܸ௘௦. The problem is considered to be fully solved when ௙ܸ௥௘௘ ∪ ௢ܸ௖௖ = ܸ\ ௥ܸ௘௦.

 Due to the nature of the problem, a suitable path has to be computed online and in
real-time, as free space to navigate is not known prior to its exploration.

Problem Definition: Volumetric Exploration



Constituents of Autonomy
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 Autonomous Volumetric Exploration:
Next-Best-View Pathplanner (nbvplanner)

 Tree-based exploration: At
every iteration, a finite depth
random tree is spanned.
Each vertex is annotated with
the collected Information
Gain – a metric of how much
new space is going to be
explored.

 Within it, evaluation regarding
the path that overall leads to
the highest information gain is
conducted. This corresponds
to the best path for the given
iteration (a sequence of next-
best-views as sampled).

 Receding Horizon: For the
extracted best path, only
the first viewpoint is
actually executed.

 The system moves to it,
map is updated, process
is repeated.

Executed
Step
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 Autonomous Volumetric Exploration:
Next-Best-View Pathplanner (nbvplanner)



Advancing Autonomy
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 Synergies & Aliases between Autonomy Components:
Perception, Control, Path-planning can be coupled.

 Investigate new ways to close the loop between perception, planning and control.

 Estimation robustness affects control. Jerky control impacts state estimation. Collision free 
navigation requires robust control. Large-scale planning requires globally consistent 
mapping. Efficient precision planning has to keep track of mapping uncertainty. 

Not just a sequence of components…



Advancing Autonomy
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 Synergies & Aliases between Autonomy Components:
Perception, Control, Path-planning can be coupled.

Active Perception Planning

 Robustify the exploration and mapping process by exploiting propagation of robot belief.

Not just a sequence of components…



Advancing Autonomy
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 The Objective:
Explore and map a location with consistency.

Given a bounded volume ܸா, find a collision free path ߪ starting at an initial
configuration ௜௡௜௧ߦ ∈ Ξthat leads to identifying the free and occupied parts ௙ܸ௥௘௘ா
and ௢ܸ௖௖ா when being executed, such that there does not exist any collision free
configuration from which any piece of ܸா{ ௙ܸ௥௘௘ா , ௢ܸ௖௖ா } could be perceived.

Problem 1: Volumetric Exploration

Given a ܸெ ⊂ ܸா, find a collision free path ெߪ starting at an initial configuration ଴ߦ ∈ Ξ
and ending in a configuration ௙௜௡௔௟ߦ ∈ Ξ that aims to improve the robot’s localization
and mapping confidence by following paths of optimized expected robot pose and
tracked landmarks covariance.

Problem 2: Belief Uncertainty-aware planningCombined Problem

The overall problem is that of exploring an unknown bounded 3D volume ܸா ⊂ ℝଷ, while
aiming to minimize the localization and mapping uncertainty as evaluated through a
metric over the robot pose and landmarks probabilistic belief.

Problem Definition



Advancing Autonomy
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 Autonomous Uncertainty-Aware Exploration & Mapping
Receding-Horizon-Exploration Mapping Path-planner (rhemplanner)

 Two-level Path-planning 
paradigm: 
Addresses the combined 
problem every iteration, a 
finite depth random tree is 
spanned. Each vertex is 
annotated with the collected 
Information Gain – a metric of 
how much new space is 
going to be explored. 



Advancing Autonomy
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 Autonomous Uncertainty-Aware Exploration & Mapping
Exploration Level

 Probabilistic Re-observation term: Maximize newly explored space and re-observe the 
parts where confidence whether they are occupied is decreased.



Advancing Autonomy
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 Autonomous Uncertainty-Aware Exploration & Mapping
Uncertainty-Aware Level

 Evaluation of a path that minimizes the robot 
localization uncertainty.

 Pose and the tracked landmarks’ uncertainty are 
estimated while performing real-time odometry.

 The mechanism to propagate robot’s belief has to 
be established.



Advancing Autonomy

Christos Papachristos, Autonomous Robots Lab, University of Nevada, Reno

 Autonomous Uncertainty-Aware Exploration & Mapping
Uncertainty-Aware Level

 Use the EKF-based mechanism that provides 
localization backend to propagate own pose and 
landmarks’ belief.

 Assume closed-loop system dynamics model as 
identified – simulated inertial measurements.

 Augment with octomap-support to compute landmark 
visibility. l1

l2 l3
l4



Advancing Autonomy
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 Autonomous Uncertainty-Aware Exploration & Mapping
Uncertainty-Aware Level

 Finally, the path that arrives at the 
Exploration Level’s end viewpoint with 
the minimal uncertainty is selected.

 The D-optimality metric of the 
propagated process covariance 
matrix is used.  

 This path might turn out to be the 
original straight segment – Optimum is 
only selected out of a finite number of 
randomly sampled trajectories.
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 Receding-Horizon Exploration Mapping Pathplanner (rhemplanner)
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 Receding-Horizon Exploration Mapping Pathplanner (rhemplanner)
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 Receding-Horizon Exploration Mapping Pathplanner (rhemplanner)
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 Receding-Horizon Exploration Mapping Pathplanner (rhemplanner)



Current Research
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 Visually-Degraded Environments
 Generalizable solutions enable accelerated paces of research.



Current Research
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 Visually-Degraded Environments
 Generalizable solutions enable accelerated paces of research.

 Uncertainty-Aware Exploration and Mapping in darkness.



Current Research
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 Change Detection and Classification:
 Perform real-time change detection.

 Expand to efficient 3D-to-3D change
detection approaches.

 Incorporate change-driven “curiosity” in
planning algorithms.



Current Research
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 Multi-Modal Sensor Fusion
 Robustify autonomous localization & mapping. Augment uncertainty-aware path-planning.



Thank you! 
Please ask your question!


