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Subterranean Robotics Operations

 Subterranean environments impose extreme

challenges for robotic operation – among others:

 Visually-degraded, often dark, and dust/fog/smoke-
filled GPS-denied environments.

 Challenging terrain, complex geometry and frequently
very narrow and confined settings.

 Limited communication capacity between the robotic
team and between robots and the human operator(s).

 Very limited training data for very diverse environments.
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Subterranean Robotics Operations

 Subterranean environments correspond to important

operational domains for robots – e.g.:

 For industry-related applications such as underground
mine inspection, vehicle localization and SAR.

 For urban infrastructure monitoring such as the
inspection of sewers and subway stations.

 For security inspection of critical infrastructure such as
the case of the nuclear complex.

 For security surveillance operations in the most
challenging environments.
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Subterranean Robotics Operations

 Autonomous, robust and long-term robotics

operation in underground settings requires novel

research in systems and methods – among others for:

 Robotic perception in visually- and broadly sensing
degraded environments.

 Example: an underground coal mine with a fire accident.

 Robotic exploration and informative path planning for
accessing and mapping subterranean spaces.

 Example: exploring a cave or inspecting city sewers.

 Collision-resilient robotic navigation.

 Example: an aerial robot going through a narrow manhole.

 Detection of objects of interest subject to lack of
training data.

 Example: what objects is an anomaly inside a cave?
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Subterranean Robotics Operations

 In response to these challenges, our research focuses

on the following algorithmic and technological

contributions:

 Multi-modal robotic perception for robust localization
and mapping in GPS-denied visually-degraded
underground environments.

 Informative path planning for exploration such that it

simultaneously accounts for the vehicle localization
uncertainty and the visual saliency of objects.

 Physical interaction-enabled collision-tolerant flight.

 Saliency-driven proto-object detection and one-class
classification given only “positive” data.

 Field deployments enabling specific analysis and
problem-driven research.
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Multi-Modal Robotic Perception

 Multi-modal sensor fusion for subterranean robots:

 Selected modalities:

 Visible-light cameras

 Thermal vision

 LiDAR sensors

 IMU cues

 Multi-modal features across camera and depth range
data. Common detectors & descriptors.

 Loose fusion between visual and thermal camera data
(tight fusion to be investigated).

Two test robots:
1. Visual/Thermal-

Inertial
2. LiDAR/Visual/Inertial

Note: State-of-the-art methods of the community such as ROVIO 

and LOAM are part of the tests also. 
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merged

Evaluation in low-light environment with 

subsets of it lacking visual features but 

maintaining depth information. 

Visual: ORB

Depth: Enhanced BRAND
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Indicative Results
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Multi-Modal Robotic Perception

 Previous work also included the use of shutter-

synchronized LEDs

 Stereo global shutter cameras with shutter opening
synchronized with flashing LEDs.

 IMU synchronized with vision (at 10x the rate)

 Time-of-flight 3D Depth Sensing (software Synchronized)

 Thermal Vision
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Informative Path Planning

 Informative path planning for subterranean

exploration:

 Planning objectives

 Explore unknown areas

 Account for uncertainty

 Account for visual saliency

 Accounting for localization uncertainty is critical for
long-term robotic deployment in visually-degraded
environments.

 Accounting for proto-objects detected through visual
saliency approaches allows for intelligent information

gathering in areas for which we lack training data.

Nested multi-step 
optimization
1. Exploration
2. Sub-objectives

Note: Most of these algorithms are open-sourced already from our 

group. 
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Informative Path Planning

 Problem 1:

 Explore an unknown but bounded volume in Visually-degraded Conditions and derive a complete 3D model of it.

 Problem 2:

 As the localization uncertainty depends on the viewpoints selected, the order that they are visited, and the motion

patterns employed, ensure minimized localization uncertainty to ensure robust consistent mapping.

 Problem 3:

 Account for visual saliency – visual context-aware exploration that focuses on objects that “pop out” and goes

rapidly through self-similar environments.

 Develop robot curiosity by detecting information gaps between perceptual stimuli and prior experiences. Self-

supervised online learning based on learning progress.
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Informative Path Planning

 Receding Horizon Exploration and Mapping Planner
(rhemplanner)

 Problem 1:

 Explore an unknown but bounded volume and derive a
complete 3D model of it.

 Problem 2:

 As the localization uncertainty depends on the
viewpoints selected, the order that they are visited, and
the motion patterns employed, ensure minimized
localization uncertainty to ensure robust consistent
mapping.
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Informative Path Planning

 Receding Horizon Exploration and Mapping Planner
(rhemplanner)

 Exploration Gain

 Uncertainty Minimization

 Belief Propagation: in order to identify the paths that
minimize the robot uncertainty, a mechanism to
propagate the robot belief about its pose and the
tracked features has to be established.
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Informative Path Planning

 Visual Saliency-aware Exploration Planner
(vseplanner)

 Problem 1:

 Explore an unknown but bounded volume and derive a
complete 3D model of it.

 Problem 3:

 Account for visual saliency – visual context-aware
exploration that focuses on objects that “pop out” and
goes rapidly through self-similar environments.

 Develop robot curiosity by detecting information gaps
between perceptual stimuli and prior experiences. Self-

supervised online learning based on learning progress.
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Informative Path Planning

 Visual Saliency Model

 Saliency is the distinct subjective perceptual

quality of certain objects and entities that makes

them stand out from their neighbors and

immediately attract our attention.

Frintrop, Simone, Thomas Werner, and German Martin Garcia. 

"Traditional saliency reloaded: A good old model in new 

shape." Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition. 2015.

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno, www.autonomousrobotslab.com

http://www.autonomousrobotslab.com/


Informative Path Planning

 Saliency-encoded Occupancy Map

 Five type of voxels

 Unknown, Explored-free, Explored-normal, Explored-salient,
Explorent-salient-inhibited

 Saliency Map projection on Map

 Fusing multiple views for 3D saliency octomaps

 Inhibition of Return in Occupancy Maps

 Enables attention-shift
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Indicative Results
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Physical Interaction-based Collision tolerance

 Collision may be unavoidable if the robot access

extremely narrow environments and some

localization uncertainty cannot be eliminated.

 Instead of assuming perfect avoidance of collision,

an alternative would be to exploit them.

 Enhance aerial robots with force/bend sensing

antennae around their structure and deployment of

interaction feedback-based control.

 Provide a mechanism of resilience subject to pose

and map estimation failure.

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno, www.autonomousrobotslab.com

http://www.autonomousrobotslab.com/


Physical Interaction-based Collision tolerance

 Three modes of operation/hybrid

system formulation:

 Free-Flight (FF)

 Compliant Interaction (CI)

 Rigid Interaction (RI)

 Control law for collision-tolerance is

purely reactive to minimize or

eliminate interaction.

 Future investigation will focus on
wall-following and surface mapping
through touch.
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Physical Interaction-based Collision tolerance

 Three modes of operation/hybrid

system formulation:

 Free-Flight (FF)

 Compliant Interaction (CI)

 Rigid Interaction (RI)

 Control law for collision-tolerance is

purely reactive to minimize or

eliminate interaction.

 Future investigation will focus on
wall-following and surface mapping
through touch.

 Method verified onboard a robot

that was only left with IMU,

barometric and force/bend sensing

– no full pose/map estimation.

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno, www.autonomousrobotslab.com

http://www.autonomousrobotslab.com/


Field Deployments

 The aforementioned research was tested and

verified in different environments of interest,

including:

 Underground metal mines

 Railroad tunnels in Virginia City, Nevada [shown]

 Urban tunnels in Reno, Nevada

 Smoke-filled industrial environments at the

university [shown]
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Field Deployments

 The aforementioned research was tested and

verified in different environments of interest,

including:

 Underground metal mines in Winnemucca,

Nevada

 Railroad tunnels in Virginia City, Nevada [shown]

 Smoke-filled industrial environments at the

university [shown]
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Open Source contributions

 Open Source Code:

 Structural Inspection Planner:

 https://github.com/ethz-asl/StructuralInspectionPlanner

 Next-Best-View Planner:

 https://github.com/ethz-asl/nbvplanner

 Receding Horizon Exploration and Mapping Planner:

 https://github.com/unr-arl/rhem_planner

 Visual Saliency-aware Exploration Planning

 https://github.com/unr-arl/vseplanner

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno, www.autonomousrobotslab.com

https://github.com/ethz-asl/StructuralInspectionPlanner
https://github.com/ethz-asl/nbvplanner
https://github.com/unr-arl/rhem_planner
https://github.com/unr-arl/vseplanner
http://www.autonomousrobotslab.com/


Thank you! 

www.autonomousrobotslab.com 

Please ask your question!


