Aerial Robotics for Exploration
of Subterranean Environments

C. Papachristos , Frank Mascarich, S.Khattak , T. Dang, Kostas Alexis
Autonomous Robots Lab, University of Nevada, Reno

f
W
AUTONOMOUS
ROBOTS
LAB
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Subterranean Robotics Operations

O Subterranean environments impose extreme
challenges for robotic operation & among others:

O Visually-degraded, often dark, and dust/fog/smoke -
filled GPS-denied environments .

O Challenging terrain, complex geometry and frequently
very narrow and confined settings.

O Limited communication capacity between the robotic
team and between robots and the human operator(s) .

O Very limited training data for very diverse environments .
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Subterranean Robotics Operations

Subterranean environments correspond to important
operational domains for robots de.g.:

For industry -related applications such as underground
mine inspection, vehicle localization and SAR

For urban infrastructure  monitoring such as the
inspection of sewers and subway stations.

For security inspection of critical infrastructure such as
the case of the nuclear complex .

For security surveillance operations in the most
challenging environments .
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Subterranean Robotics Operations

Autonomous, robust and long -term  robotics
operation in underground settings requires novel
research in systems and methods & among others for:

Robotic perception in visually- and broadly sensing
degraded environments .

Example : an underground coal mine with a fire accident .

Robotic exploration and informative path planning for
accessing and mapping subterranean spaces.

Example : exploring a cave or inspecting city sewers.

Collision -resilient robotic navigation

Example : an aerial robot going through a narrow manhole .

Detection of objects of interest subject to lack of
training data .

Example : what objects isan anomaly inside a cave?
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Subterranean Robotics Operations

O Inresponse to these challenges, our research focuses

on

the following algorithmic and technological

contributions :

A

O

O

o O

O

Multi-modal robotic perception for robust localization
and  mapping in  GPSdenied visually-degraded
underground environments .

Informative path planning for exploration such that it
simultaneously accounts for the vehicle localization
uncertainty and the visual saliency of objects .

Physical interaction -enabled collision -tolerant flight.

Saliency -driven proto -object detection and one -class
classification given only 0 p o s i datav e 6

Field deployments enabling specific analysis and
problem -driven research .
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Multi-Modal Robotic Perception

O Multi-modal sensor fusion for subterranean robots :

O Selected modalities :

—

O Visible-light cameras
A N Two test robots:
O Thermal vision | 1. Visual/Thermal -
O LiDARsensors Ir.lertial _ _
. 2. LiDAR/Visual/lnertial
O IMU cues ]
O Multi-modal features across camera and depth range

data . Common detectors & descriptors .

O Loose fusion between visual and thermal camera data
(tight fusion to be investigated) .

Note: State -of-the -art methods of the community such as ROVIO
and LOAM are part of the tests also.
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Multi-Modal Robotic Perception

Multi-modal sensor fusion for subterranean robots:

Selected modalities :

Visible-light cameras
Two test robots:

Thermal vision 1. Visual/Thermal -
LiDAR sensors Inertial

IMU cues

Multi-modal features across camera and depth
data . Common detectors & descriptors .

Loose fusion between visual and thermal camera data

(tight fusion to be investigated) .

Note: State -of-the -art methods of the community such as ROVIO
and LOAM are part of the tests also.
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2. LiDAR/Visual/lnertial

Vision-Depth Landmarks and Inertial Fusion for Navigation
in Degraded Visual Environments

Shehryar Khattak, Christos Papachristos, Kostas Alexis
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This material is based upon work supported by the Department of Energy under Award Number [DE-EM0004478]

Evaluation in low -light environment with
subsets of it lacking visual features but
maintaining depth information.

Visual: ORB } merged
Depth: Enhanced BRAND
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Multi-Modal Robotic Perception

O Multi-modal sensor fusion for subterranean robots :

O Selected modalities :

O Visible-light cameras
Two test robots:

O Thermal vision 1. Visual/Thermal -
O LiDAR sensors Inertial

. 2. LiDAR/Visual/lnertial
O IMU cues

O

Multi-modal features across camera and depth range
data . Common detectors & descriptors .

O Loose fusion between visual and thermal camera data
(tight fusion to be investigated) .

Note: State -of-the -art methods of the community such as ROVIO
and LOAM are part of the tests also.
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Thermal-Inertial Localization for Autonomous Navigation
of Aerial Robots through Obscurants

Christos Papachristos, Kostas Alexis
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Multi-Modal Robotic Perception

O Previous work also included the use of shutter-
synchronized LEDs

O Stereo global shutter cameras with shutter opening
synchronized with flashing LEDs

~

O IMU synchronized with vision (at 10x the rate)

A

O Time-of-flight 3D Depth Sensing (software Synchronized)

O Thermal Vision
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Autonomous Aerial Robotic Exploration and Mapping
of a Railroad Tunnel in Degraded Visual Conditions
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Informative Path Planning

O Informative path planning for  subterranean

exploration

O Planning objectives 7

O Explore unknown areas
O Account for uncertainty

O Account for visual saliency

O Accounting for localization

Nested multi -step
_ optimization

1. Exploration

2. Sub-objectives

uncertainty is critical for

long -term robotic deployment in visually-degraded

environments .

O

Accounting for proto -objects detected through visual

saliency approaches allows for intelligent information

gathering in areas for which

Note: Most of these algorithms are open

group.

we lack training data .

-sourced already from our
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Informative Path Planning

O Problem 1;

4 A . . . . .
O Explore an unknown but bounded volume in Visually-degraded Conditions and derive a complete 3D model of it.

O Problem 2:

- O Asthe localization uncertainty depends on the viewpoints selected, the order that they are visited, and the motion

patterns employed, ensure minimized localization uncertainty to ensure robust consistent mapping .

O Problem 3:

O Account for visual saliency & visual context -aware exploration that focuses on objects that 0 p o p u tafd goes
rapidly through self-similar environments .

O Develop robot curiosity by detecting information gaps between perceptual stimuli and prior experiences . Self-
supervised online learning based on learning progress.
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Informative Path Planning

Receding Horizon Exploration and Mapping Planner
(rhemplanner )

Problem 1:

Explore an unknown but bounded volume and derive a
complete 3D model of it.

Problem 2:

As the localization uncertainty depends on the
viewpoints selected, the order that they are visited, and
the motion patterns employed, ensure minimized
localization  uncertainty to ensure robust consistent

mapping .
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