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LIDAR-based mapping in underground mine drift
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Subterranean Robotics Operations

= Subterranean environments  impose  exireme
challenges for roboftic operation — among others:

= Visually-degraded, often dark, and dust/fog/smoke-
filled GPS-denied environments.

= Challenging terrain, complex geometry and frequently
very narrow and confined settings.

= Limited communication capacity between the robotic
team and between robots and the human operator(s).

= Very limited training data for very diverse environments.
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Subterranean Robotics Operations

Subterranean environments correspond to important
operational domains for robots — e.g.:

For industry-related applications such as underground
mine inspection, vehicle localization and SAR.

For wurban infrastructure monitoring such as the
inspection of sewers and subway stations.

For security inspection of critical infrastructure such as
the case of the nuclear complex.

For security surveillance operations in the most
challenging environments.
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Subterranean Robotics Operations

Autonomous, robust and long-term  robofics
operatfion in underground settings requires novel
research in systems and methods — among others for:

Robotic perception in visually- and broadly sensing
degraded environments.

Example: an underground coal mine with a fire accident.

Robotic exploration and informative path planning for
accessing and mapping subterranean spaces.

Example: exploring a cave or inspecting city sewers.

Collision-resilient robotic navigation.

Example: an aerial robot going through a narrow manhole.

Detection of objects of infterest subject to lack of
training data.

Example: what objects is an anomaly inside a cave?
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Subterranean Robotics Operations

= |nresponse to these challenges, our research focuses
on the following algorithmic and technological
contributions:

= Multi-modal robotic perception for robust localization
and mapping in  GPS-denied visuadlly-degraded
underground environments.

» |nformative path planning for exploration such that it
simultaneously accounts for the vehicle localization
uncertainty and the visual saliency of objects.

= Physical interaction-enabled collision-tolerant flight.

= Saliency-driven proto-object detection and one-class
classification given only “positive” data.

= Feld deployments enabling specific analysis and
problem-driven research.
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Multi-Modal Roboftic Perception

» Multi-modal sensor fusion for subterranean robots:

. Feature Generation Extended Kalman Filter Framework
= Selected modalities: p— — AN yes
_ Image Image F:Gefuwre Ly Features 1Ml
= Visible-light cameras ] ] X ! !
.. TWO TeST rObOTS' Pre-processing Prediction
= Thermal vision | 1. Visual/Thermal- I I
= LiDAR sensors Inertial . Common mage Delere pelcto
2. LiDAR/Visual/Inertial Feature Feature
= |MU cues . T
- Feature Detecfion on
. Common Image "
=  Multi-modal features across camera and depth range T i vedare
data. Common detectors & descriptors. S ———— '
Extraction B

» | oose fusion between visual and thermal camera data
(tight fusion to be investigated).

Descriptor Extraction

Note: State-of-the-art methods of the community such as ROVIO
and LOAM are part of the tests also.
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Multi-Modal Roboftic Perception

Mulfi-modal sensor fusion for subterranean robots: Vision-Depth Landmarks and Inertial Fusion for Navigation

" in Degraded Visual Environments
Selected modalities: 9
Shehryar Khattak, Christos Papachristos, Kostas Alexis

Visible-light cameras
Two test robofs:

Thermal vision 1. Visual/Thermal-

LIDAR sensors Inertial
2. LiDAR/Visual/Inertial

IMU cues

Multi-modal features across camera and depth range
data. Common detectors & descriptors.
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Loose fusion between visual and thermal camera data
(tight fusion to be investigated).

This material is based upon work supported by the Department of Energy under Award Number [DE-EM0004478]

Evaluation in low-light environment with
subsets of it lacking visual features but

Note: State-of-the-art methods of the community such as ROVIO moin’roining depfh information.

and LOAM are part of the tests also. .
Visual: ORB } merged
Depth: Enhanced BRAND
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Multi-Modal Roboftic Perception

» Multi-modal sensor fusion for subterranean robots:

» Selected modalifies:

= Visible-light cameras
Two test robofs:

= Thermal vision 1. Visual/Thermal-

= LiDAR sensors Inertial

2. LiDAR/Visual/Inertial
» |MU cues

=  Multi-modal features across camera and depth range
data. Common detectors & descriptors.

» | oose fusion between visual and thermal camera data
(tight fusion to be investigated).

Note: State-of-the-art methods of the community such as ROVIO
and LOAM are part of the tests also.
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Thermal-Inertial Localization for Autonomous Navigation
of Aerial Robots through Obscurants

Christos Papachristos, Kostas Alexis
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Multi-Modal Roboftic Perception

=» Previous work also included the use of shutter-
synchronized LEDs

= Stereo global shutter cameras with shutter opening
synchronized with flashing LEDs.

= MU synchronized with vision (at 10x the rate)

= Time-of-flight 3D Depth Sensing (software Synchronized)

» Thermal Vision

TRIG/ 200Hz [modulo |2z
2ms 2ms
XLAMP
ARM Cortex M4 Sony ICX445 XHP70
5000K
W UsB W USB3 w UsB3
30 Tasis | MPU | .| ]
* Visual-Inertial odometry 5;
- Map representation > | IRS1145C
Volumetric mapping INTEL NUCS5i7RYH [i7-5557U Dual Core €= 3D Depth
Additional tasks ;ggg;’;‘g RAM Sensor
= Path planning
= Position control
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Autonomous Aerial Robotic Exploration and Mapping
of a Railroad Tunnel in Degraded Visual Conditions

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis
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Informative Path Planning

» |nformafive path planning for  subterranean
exploration:

= Planning objectives 7

Nested multi-step
_ opfimization
= Account for uncertainty 1. Exploration
2. Sub-objectives

= Explore unknown areaqs

= Account for visual saliency

= Accounting for localization uncertainty is critical for
long-term robotic deployment in visually-degraded
environments.

= Accounting for proto-objects detected through visual
saliency approaches allows for intelligent information
gathering in areas for which we lack training data.

BT

=7
A

. Unexplored vuxch Explored, free vuxcl. Explored, occupied-"normal” voxel n Explored, occupied-"salient" voxel

. Explored, occupied-"salient” inhibited voxel - Volume V° ‘ 1" planning level (exploration) f‘,- 2" planning level (saliency)
L /]

viewpoint
heading

Note: Most of these algorithms are open-sourced already from our
group.
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Informative Path Planning

= Problem 1:

? = Explore an unknown but bounded volume in Visually-degraded Conditions and derive a complete 3D model of it.

= Problem 2:

—1 = As the localization uncertainty depends on the viewpoints selected, the order that they are visited, and the motion

patterns employed, ensure minimized localization uncertainty to ensure robust consistent mapping.

= Problem 3:

= Account for visual saliency — visual context-aware exploration that focuses on objects that “pop out” and goes
* rapidly through self-similar environments.

= Develop robot curiosity by detecting information gaps between perceptual stimuli and prior experiences. Self-
supervised online learning based on learning progress.
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Informative Path Planning

= Receding Horizon Exploration and Mapping Planner |2 | b | ©) ’r
(rhemplanner) o, Y T :\ 1
2l [ N - N/ Il
= Problem 1: ! ! y
: IS IS /
= Explore an unknown but bounded volume and derive a 2| /\g -r(; ™ /1\; 1‘; ’{QJ’F
complete 3D model of it. /| . 12 4 i 1 o, 14
® 1Y 1r 1Y
= Problem 2: d) | ¢) | n |
» As the locadlization uncertainty depends on the ;}3 g e LY
viewpoints selected, the order that they are visited, and  £| /" | | <[00 | NEw Ll L
the motion patterns employed, ensure minimized = R A | J
localization uncertainty to ensure robust consistent § }égff)/ | ,2{‘:, : »@7
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|:| occupied, mapped voxel D unexplored voxel landmark uncertainty ellipsoid
viewpoint heading .':‘. V™ for iteration / 1" planning level edge . 2" planning level edges
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Informative Path Planning

= Receding Horizon Exploration and Mapping Planner
(rhemplanner)

= Exploration Gain
ExplorationGain(nkE) = ExplorationGain(nkE_l) +
VisibleVolume (M, &) exp(—Ac(oi_q ;) +
ReobservationGain(M, P, &) exp(—)\c(crkE_L,C )

= Uncertainty Minimization

pose, Iy
- T
x=[Tqvbsby,cz|py - pypo - pJ
' v
robot states, ¢ features states, [ ¢

/
/

= Belief Propagation: in order to identify the paths that Dopt(UM) = exp(log([det(Z, f(JM)]l/(lpr)))
minimize the robot uncertainty, a mechanism to ’

propagate the robot belief about its pose and the : . M o M
tracked features has to be established. BellefGall’l(O‘a ) T DOPt (Ga )
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Informative Path Planning

=  Visuadl Saliency-aware Exploration Planner
(vseplanner)

= Problem 1:

= Explore an unknown but bounded volume and derive a
complete 3D model of it.

= Problem 3:

e

= Account for visual saliency — visual context-aware = =
exploration that focuses on objects that “pop out” and :
goes rapidly through self-similar environments.

= Develop robot curiosity by detecting information gaps
between perceptual stimuli and prior experiences. Self-
supervised online learning based on learning progress.

C. Papachristos, F. Mascarich, S. Khattak, T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno, www.autonomousrobotslab.com ‘Eogm@



http://www.autonomousrobotslab.com/

Informative Path Planning

= Visual Saliency Model

= Saliency is the distinct subjective perceptual
quality of certain objects and entities that makes
them stand out from their neighbors and
immediately attract our attention.

Conspicuity
Maps

Feature

Maps

Contrast
Pyramids

Pyramids

Center & Surrou!

P
‘J\) Gaussian smoothing

IRed/Gleen Lme/Vellow Intenslfy[ =

| @ Center-Surroun: d difference
. . . . —_‘ @ Surroun d-Center difference
Frintrop, Simone, Thomas Werner, and German Martin Garcia. w‘ o
Fusion

"Traditional saliency reloaded: A good old model in new o P &
shape." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015.

¢
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Informative Path Planning

= Saliency-encoded Occupancy Map

= Five type of voxels

= Unknown, Explored-free, Explored-normal, Explored-salient,
Explorent-salient-inhibited

= Saliency Map projection on Map
s= % H;‘J Si(u.v)
= Fusing multiple views for 3D saliency octomaps
S = S (SR =S
= |nhibition of Return in Occupancy Maps

= Enables atfention-shift

Sl ST PAT AT =t —
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Visual Saliency-aware Receding Horizon Autonomous
Exploration with Application to Aerial Robotics

Tung Dang, Christos Papachristos, Kostas Alexis
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Physical Interaction-based Collision tolerance

Collision may be unavoidable if the robot access
extremely narrow  environments and  some
localization uncertainty cannot be eliminated.

Instead of assuming perfect avoidance of collision,
an alternative would be to exploit them.

Enhance aerial robots with force/bend sensing
antennae around their structure and deployment of
interaction feedback-based control.

Provide a mechanism of resilience subject to pose
and map estimation failure.

Robot Realization
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Physical Interaction-based Collision tolerance

» Three modes of operation/hybrid
system formulation:

= Free-Flight (FF)

= Compliant Interaction (Cl)

Force-bend sensor — ]
enhanced antennae
* Force-bend
X _sensor
% @ l t \ .\.7'.

Free Flight Physical Interaction (Contact)

= Rigid Interaction (RI)

» Control law for collision-tolerance is
purely reactive to minimize or
eliminate intferaction.

= Future investigation will focus on
wall-following and surface mapping
through touch.

Free Flight Physical Interaction |
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Physical Interaction-based Collision tolerance

» Three modes of operation/hybrid
system formulation:

= Free-Flight (FF)

Haptic Feedback-based Reactive Navigation for
Aerial Robots subject to Pose and Map Estimation Failure

C. Papachristos, S. Khattak, K. Alexis

= Compliant Interaction (Cl)

= Rigid Interaction (RI)

» Control law for collision-tolerance is
purely reactive to minimize or
eliminate interaction.

= Future investigation will focus on
wall-following and surface mapping
through touch.

=» Method verified onboard a robot e | Oht. .

N This material is based upon worg (eloted to the Mine Insplectlon Robotics pro;ect sponsored by the
ilh qi' qu o n Iy Iefll' w“'h IMU , - Nevada Knowledge Fund administered by the Governor's Office of Economic Development
barometric and force/bend sensing
- no full pose/map estimation.
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Fleld Deployments

» The aoforementioned research was tested and
verified in different environments of interest,
including:

= Underground metal mines
= Railroad tunnels in Virginia City, Nevada [shown]
= Urban tunnels in Reno, Nevada

» Smoke-filed industrial environments at the
university [shown]
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Fleld Deployments

» The aoforementioned research was tested and
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including:

= Underground metal mines
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Field Deployment of Autonomous Aerial Robots
in Underground Mines
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Open Source contributions

wd SOCIAL CODING

= Open Source Code:

» Structural Inspection Planner:

» Nhitps://github.com/ethz-asl/StructurallinspectionPlanner

=» Next-Best-View Planner:

» hitps://qithub.com/ethz-asl/nbvplanner

» Receding Horizon Exploration and Mapping Planner:

» hitps://qithub.com/unr-arl/rhnem planner

= Visual Saliency-aware Exploration Planning

» hitps://qithub.com/unr-arl/vseplanner
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