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Subterranean Robotics Operations

Ô Subterranean environments impose extreme

challenges for robotic operation ðamong others :

Ô Visually-degraded, often dark, and dust/fog/smoke -
filled GPS-denied environments .

Ô Challenging terrain, complex geometry and frequently
very narrow and confined settings .

Ô Limited communication capacity between the robotic
team and between robots and the human operator(s) .

Ô Very limited training data for very diverse environments .
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Subterranean Robotics Operations

Ô Subterranean environments correspond to important

operational domains for robots ðe.g.:

Ô For industry -related applications such as underground
mine inspection, vehicle localization and SAR.

Ô For urban infrastructure monitoring such as the
inspection of sewers and subway stations .

Ô For security inspection of critical infrastructure such as
the case of the nuclear complex .

Ô For security surveillance operations in the most
challenging environments .
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Subterranean Robotics Operations

Ô Autonomous, robust and long -term robotics

operation in underground settings requires novel

research in systems and methods ðamong others for :

Ô Robotic perception in visually- and broadly sensing
degraded environments .

Ô Example : an underground coal mine with a fire accident .

Ô Robotic exploration and informative path planning for
accessing and mapping subterranean spaces .

Ô Example : exploring a cave or inspecting city sewers.

Ô Collision -resilient robotic navigation .

Ô Example : an aerial robot going through a narrow manhole .

Ô Detection of objects of interest subject to lack of
training data .

Ô Example : what objects is an anomaly inside a cave?
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Subterranean Robotics Operations

Ô In response to these challenges, our research focuses

on the following algorithmic and technological

contributions :

Ô Multi -modal robotic perception for robust localization
and mapping in GPS-denied visually-degraded
underground environments .

Ô Informative path planning for exploration such that it

simultaneously accounts for the vehicle localization
uncertainty and the visual saliency of objects .

Ô Physical interaction -enabled collision -tolerant flight .

Ô Saliency -driven proto -object detection and one -class
classification given only òpositiveódata .

Ô Field deployments enabling specific analysis and
problem -driven research .
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Multi -Modal Robotic Perception

Ô Multi -modal sensor fusion for subterranean robots :

Ô Selected modalities :

Ô Visible-light cameras

Ô Thermal vision

Ô LiDARsensors

Ô IMU cues

Ô Multi -modal features across camera and depth range
data . Common detectors & descriptors .

Ô Loose fusion between visual and thermal camera data
(tight fusion to be investigated) .

Two test robots:
1. Visual/Thermal -

Inertial
2. LiDAR/Visual/Inertial

Note: State -of -the -art methods of the community such as ROVIO 

and LOAM are part of the tests also. 
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merged

Evaluation in low -light environment with 

subsets of it lacking visual features but 

maintaining depth information. 

Visual: ORB

Depth: Enhanced BRAND
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Indicative Results
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Multi -Modal Robotic Perception

Ô Previous work also included the use of shutter -

synchronized LEDs

Ô Stereo global shutter cameras with shutter opening
synchronized with flashing LEDs.

Ô IMU synchronized with vision (at 10x the rate)

Ô Time-of -flight 3D Depth Sensing (software Synchronized)

Ô Thermal Vision

C. Papachristos , F. Mascarich , S. Khattak , T. Dang, K. Alexis, Autonomous Robots Lab, University of Nevada, Reno , www.autonomousrobotslab.com

http://www.autonomousrobotslab.com/


Indicative Results

Kostas Alexis, Autonomous Robots Lab, www.autonomousrobotslab.com

http://www.autonomousrobotslab.com/


Informative Path Planning

Ô Informative path planning for subterranean

exploration :

Ô Planning objectives

Ô Explore unknown areas

Ô Account for uncertainty

Ô Account for visual saliency

Ô Accounting for localization uncertainty is critical for
long -term robotic deployment in visually-degraded
environments .

Ô Accounting for proto -objects detected through visual
saliency approaches allows for intelligent information

gathering in areas for which we lack training data .

Nested multi -step 
optimization
1. Exploration
2. Sub-objectives

Note: Most of these algorithms are open -sourced already from our 

group. 
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Informative Path Planning

Ô Problem 1:

Ô Explore an unknown but bounded volume in Visually-degraded Conditions and derive a complete 3D model of it.

Ô Problem 2:

Ô As the localization uncertainty depends on the viewpoints selected, the order that they are visited, and the motion

patterns employed, ensure minimized localization uncertainty to ensure robust consistent mapping .

Ô Problem 3:

Ô Account for visual saliency ðvisual context -aware exploration that focuses on objects that òpopoutóand goes

rapidly through self-similar environments .

Ô Develop robot curiosity by detecting information gaps between perceptual stimuli and prior experiences . Self-

supervised online learning based on learning progress .
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Informative Path Planning

Ô Receding Horizon Exploration and Mapping Planner
(rhemplanner )

Ô Problem 1:

Ô Explore an unknown but bounded volume and derive a
complete 3D model of it.

Ô Problem 2:

Ô As the localization uncertainty depends on the
viewpoints selected, the order that they are visited, and
the motion patterns employed, ensure minimized
localization uncertainty to ensure robust consistent
mapping .
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