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Course Outline

A brief introduction

= What path planning is about and some basic notes
Collision-free Navigation through PRM, RRT and RRT*

= An intro to some basic methods for collision-free motion planning
Unknown Area Exploration Path Planning

= Methods to explore unknown environments
Unknown Area Exploration Path Planning under Uncertainty

= Methods to explore unknown environments while maintaining localizability
Integrated Task and Motion Planning

= And a bit of infroduction on linear temporal logic

Thoughts for a Curiosity-aware Exploration planner

= Thoughts for a next path planning contribution
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What is Path Planning rouglye

= Determining the robot path based on a set of goals and objectives, a set of robot
constraints and subject to a representation and map of the environment.
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Trends in Robotics/Motion Planning

= Classical Robotics (mid-70’s)

= Exact models
= No sensing necessary \- Reactive Paradigm (mid-80's)

= No models

/ = Relies heavily on good sensing
= Hybrids (since 90’s)

» Model-based at higher levels

=» Reaqctive at lower levels

= Probabilistic Robotics (since mid-90’s)
= Seamless integration of models and sensing
= |naccurate models, inaccurate sensors

Notes from G. Hager http://voronoi.sbp.ri.cmu.edu/~motion
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Overview of Concepts

= Planning Tasks = Properties of the Robot = Algorithmic Properties
= Navigation = Degrees of Freedom = Optimality
= Coverage = Non/Holonomic = Computational Cost
= Exploration = Kinematic vs Dynamic » Completeness
= Target follow T —— of he = Resolution completeness
= Localization Environment = Probabilistic

completeness

= Mapping = Static / Dynamic = Online vs Offline

= Deterministic /

: = Sensor-based or not
Uncertain

» Feedback-based or not
= Known / Unknown
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Example of a world (and a robot)
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Fundamental Problem of Path Planning

= Problem Statement:

= Compute a continuous sequence of collision-free robot configurations connecting
the initial and goal configurations.

»  Geometry of the environment
»  Geometry and kinematics of the robot

= |nitial and goal configurations =  Collision-free path

Path Planner
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Fundamental Problem of Path Planning

= Problem Statement:

= Compute a continuous sequence of collision-free robot configurations connecting
the initial andgoal configurations.

= Motion Planning Statement for collision-free navigation

= |f W denotes the robot’s workspace, and WO0; denotes the i-th obstacle, then the
robot’s free space, Wy, is defined as: Weee =W — (UWO0;) and a path ¢ is

c:[0,1] » Weee, Where ¢(0) is the starting configuration ggq+ and c(1) is the goal
configuration qgeq;.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%\g%%%m”s@



- _

e~ .
~aZ

—

N
5

SR

| em—

T\

| ' ; .,
M. C5 W N
- o Vi -t - .

Continuous-Time Trajectory Optimization
for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto,
Roland Siegwart and Enric Galceran




Coverage Path Planning Problem

= Problem Statement:

= Consider a 3D structure to be inspected and a system with its dynamics and
constraints and an integrated sensor, the limitations of which have to be
respected. The 3D structure to be inspected is represented with a geometric form
and the goal is to calculate a path that provides the set of camera viewpoints
that ensure full coverage subject to the constraints of the robot and the
environment.

»  Geometry of the environment
=  Geometry and kinematics of the robot

=  Structure to be inspected =  Full-coverage path

Path Planner
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Three-dimensional Coverage Path Planning via Viewpoint Resam-

pling and Tour Optimization using Aerial Robots
A. Bircher, K. Alexis, M. Kamel, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart




Exploration of Unknown Environments

= Problem Statement:

= Consider a 3D bounded space V unknown to the robotf. The goal of the
autonomous exploration planner is to determine which parts of the initially
unmapped space are free Vg, or occupied V.. and essentially derive the 3D

geometric model of the world.

=  Bounds but no specific knowledge of
the environment

=  Geometry and kinematics of the robot
= Next Exploration Path

=  Online 3D mapping

Path Planner
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Task and Motion Planning

= Problem Statement:

= Execute a complex, multi-objective mission that contains an ordered set of tasks
and implies the derivation of the plan per task.

=  Map of the environment
=  Geometry and kinematics of the robot

=  Ordered set of task goals =  Execution path

Path Planner
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Collision-free Motion Planning

Kostas Alexis




The motion planning problem

Consider a dynamical control system defined by an ODE of the form:

dx

— = [0, ), x(0) = X (1)

Where is x the state, u is the conftrol.

Given an obstacle set X,,5, and a goal set X4, the objective of the motion

planning problem is to find, if it exists, a control signal u such that the solution
of (1) satisfies x(t) & X,ps for all t € R*, and x(t) € X;,4, for all t > T, for some

finite T = 0. Return failure if no such control signal exists.

Basic problem in robofics

Provably hard: a basic version of it (the Generalized Piano Mover's problem)
is known to be PSPACE-hard.
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Motion planning in practice

= Many methods have been proposed to solve such problems in practical
applications:

= Algebraic planners: Explicit representation of obstacles. Use complicated algebra
(visibility computations/projections) to find the path. Complete, but impractical.

= Discretization + graph search: Analytic/grid-based methods do not scale well to
high dimensions. Graph search methods (A*, D*, etc.) can be sensitive to graph
size. Resolution complete.

= Potential fields/navigation functions: Virtual attractive forces towards the godl,
repulsive forces away from the obstacles. No completeness guarantees; unless
“navigation functions” are available — very hard to compute in general.

= These algorithms achieve tractability by foregoing completeness altogether,
or achieving weaker forms of it, e.g. resolution completeness.
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Sampling-based algorithms

» A proposed class of moftfion planning algorithms that has been very
successful in practice is based on (batch or incremental) sampling methods:
solutions are computed based on samples drawn from some distribution.
Sampling algorithms retain some form of completeness, e.g., probabilistic or
resolution completeness.

= [ncremental sampling methods are particularly attractive:

= |[ncremental sampling algorithms lend themselves easily to real-time, on-line
implementation.

= Applicable to very generic dynamical systems.
= Do not require the explicit enumeration of constraints.

= Adaptively multi-resolution methods (i.e. make your own grid as you go along, up
to the necessary resolution).
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Probabilistic RoadMaps (PRM)

Intfroduced by Kavraki and Latombe in 1994.
Mainly geared towards “multi-query” motion planning problems.

Idea: build (offline) a graph (i.e., the roadmap) representing the
“Yconnectivity” of the environment — use this roadmap to find paths quickly at
run-time.

Learning/pre-processing phase:
= Sample n points from X¢,ee = [0,1]1%\Xpps.
= Try to connect these points using a fast “local planner” (e.g. ignore obstacles).
= |f connection successful (i.e. no collisions), add an edge between the points.
At run-time:
= Connect the start and end goal to the closest nodes in the roadmap.
= Find a path on the roadmap.

First planner ever to demonstrate the ability to solve generic planning

problems in > 4-5 dimensions!
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Probabilistic RoadMap example
J —

“Practical” algorithm:

= |ncremental construction.
= Connects points within a radius r, starfing from *“closest” ones.

= Do not attempt to connect points that are already on the same connected
component of the RPM.

What kind of properties does this algorithm havee Will it find a solution if there
is one¢ WIill that be an optimal solutione What is the complexity of the

algorithme
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Probabllistic Completeness

= Definition — Probabilistic Completeness:

= An algorithm ALG is probabilistically complete if, for any robustly feasible
motion planning problem defined by P = (X¢ree, Xinit» Xgoar ), then:

Al’lm Pr(ALG returns a solution P) = 1

= A “relaxed” notion of completeness

= Applicable to motion planning problems with a robust solution. A robust solution
remains a valid solution even when the obstacles are “dilated” by small small §.
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Asymptotic Optimality

= Definition — Asymptotic Optimality:

= An algorithm ALG is asymptoftically optimal if, for any motion planning
problem defined by P = (Xfree,xmit,Xgoal) and function ¢ that admit a robust

optimal solution with finite cost c¢*,

P ({lim R = c*}) =1

L— 00

= The function ¢ associates to each path ¢ a non-negative c(o), €.9. c(o) =
fa X(s)ds

= The definition is applicable to optimal motion planning problems with a robust
optimal solution. A robust optimal solution is such that it can be obtained as a limit
of robust (non-optimal) solutions.

NOT robust robust
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Complexity

How can we measure complexity for an algorithm that does not necessarily
terminate?

Treat the number of samples as the “size of the input” (Everything else stays
the same).

Also, we analyze complexity per sample: how much effort (fime/memory) is
needed to process one sample.

Useful for comparison of sampling-based algorithmes.

Cannot compare with deterministic, complete algorithms.
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Simple PRM (sPRM)

V  Ginic} U {SampleFree}icy, y_1; E < 0
foreach v € V do:
U < Near(G = (V,E),v,H\{v};
foreach u € U do:
if CollisionFree(v,u) then E <« E U {(v,u)}, (u,v)}
return G = (V,E);

= The simplified version of the PRM algorithm has been shown to be
probabilistically complete.

= Moreover, the probability of success goes to 1 exponentially fast, if the
environment satisfies “*good visibility” conditions.

= New key concept: combinatorial complexity vs “visibility”.
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Operation Concept of PRM

= Learning Phase:

= |nitially empty graph

= A configuration is randomly chosen

= |f this configuration lies in the free space — add

= Repeat until N vertices are added

= For each new configuration select k-closest neighbors

= [ocal planner adds vertex q to ¢’ IF planner is successful then edge is added
= Finding the path:

= Given starting vertrex ginit and end vertex ggoal

= Find k-nearest neighbors of g;;; and qg,, in roadmap, plan local path 4

= Roadmap graph may have disconnected components

= Need to find connections from gy, Ggoa tO SOMeE component

= Once on roadmap, use Dijkstra
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Remarks on PRM

sPRM is probabilistically complete and asymptotically optimal.
PRM is probabilistically complete but NOT asymptotically optimal.
Complexity for N samples: 0(N?).

Practical complexity-reduction tricks:

= k-nearest neighbors: connect to the k nearest neighbors. Complexity O(NlogN) .
(Finding nearest neighbors takes logN time.)

= Bounded degree: connect at most k nearest neighbors among those within radius
r.

= Variable radius: change the connection radius r as a function of N. Howe
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Rapidly-exploring Random Trees

Intfroduced by LaValle and Kuffner in 1998.
Appropriate for single-query planning problems.

Idea: build (online) a free, exploring the region of the state space that can
be reached from the initial condition.

At each step: sample one point from X¢..., and try to connect it fo the
closest vertex in the tree.

= Very effective in practice but presents “Voronoi bias”.
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Rapidly-exploring Random Trees

RRT
Ve« {xinith E < 0;
fori=1,....N do:

Xrand < SampleFree;
Xnearest < Nearest(G = (V,E), Xyqna);

Xnew < S teer(xnearestr xrand);
if ObstacleFree(Xpeqrest» Xnew) then:

VeV U{xpewh E < EU{(Xnearest: Xnew)};
return ¢ = (V,E);

= The RRT algorithm is probabilistically complete.

= The probability of success goes to 1 exponentially fast, if the environment
satisfies certain “good visibility” condifions.
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

Xfree .

-
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Rapidly-exploring Random Trees (RRTs)

Xfree .

«
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Rapidly-exploring Random Trees (RRTs)

X free

'/—a
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)

X free

/«.\/
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free
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Rapidly-exploring Random Trees (RRTs)

X free

‘l
Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer "é%%%%‘s)“"”sﬁ

LAB



Voronoi bias

Definition - Voronoi diagram:

Given n sites in d dimensions, the Voronoi diagram of the sites is a partition of R%
into regions, one region per site, such that all points in the interior of each region
lie closer to that regions site than to any other site.

= Vertices of the RRT that are more “isolated” (e.g. in unexplored areas, or at
the boundary of the explored area) have the larger Voronoi regions — and
are more likely to be selected for extension. 2 . T o° 7

o o
Image by MIT OpenCourseWare.
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RRTs in action

ETHzurich =R

Autonomous
Systems Lab

¥

ContinL,nous—T'ime Trajectory Optimization
for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto,
Roland Siegwart and Enric Galceran

» Greaft results for collision-avoidance of aerial robofts.

= |ntegral component of several, higher-level algorithms (e.g. exploration
and inspection).
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Limitations of such incremental sampling methods

= No characterization of the quality (e.g. “cost”) of the trajectories returned by
the algorithm.
Keep running the RRT even after the first solution has been obtained, for as long

as possible (given the real-time constraints), hoping to find a better path than
the one already available.

» No systematic method for imposing temporal/logical consfraints, such as,
e.g. the rules of the road, complicated mission objectives, ethical/ deonfic

code.
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RRTs don't have the best behavior

= Let Y,RRT pbe the cost of the best path in the RRT at the end of iteration n

= |tis easy to show that Y,RRT converges (to a random variable), i.e.:

lim YR = YSRT
n—00

= The random variable YERT is sampled from a distribution with zero mass at the
optimum:

Theorem - Almost sure suboptimality of RRTs

If a set of sampled optimal paths has measure zero, the sampling distribution is
absolufely continuous with positive density in X¢,.,, and d = 2, then the best path

in the RRT converges to a sub-optimal solution almost surely, i.e.:
Pr[YERRT > c*] =1
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Some remarks on that negative result

= [ntuition: RRT does not satisfy a necessary condition for asymptotic optimality,
l.e., that the root node has infinitely many subtrees that extend at least a

distance e away from x;,;;.
= The RRT algorithm “traps” itself by disallowing new better paths to emerge.
= Heuristics such as
= Running the RRT multiple times
= Running multiple times concurrently
= Deleting and rebuilding parts of the tree etc.

Work better than the standard RRT, but cannot remove the sub-optimal behavior.

=» How can we do better?
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Rapidly-exploring Random Graphs (RRGs)

V e« {Xinith E < 0;
fori=1,....N do:
Xrand < SampleFree;
Xnearest < Nearest(G = (V, E), Xrqna);

Xnew < Steer(xnearestr xrand);
if ObstacleFree(X,oqrest) Xnew) then:

. 1 dv)n1/d
Xnoqr < Near (G = (V,E), Xpey, MiN{Yrre ( og(car )) ,77}>;

cardV

Vel u {xnew}; E<FEU {(xnearestr N A —— xnew)};
foreach x,., € X,,0qr dO:

If COlliSionFree(xneart xnew) Then E < E U {(xnearr xnew)r (xnearr xnew)};
return ¢ = (V,E);

At each iteration, the RRG ftries to connect to the new sample all vertices in a ball
radius r;, centered at it. (Or simply default to the nearest one if such a ball is empty).

In general, the RRG builds graphs with cycles.
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Properties of RRGs

Theorem - Probabilistic completeness

Since VRRG = IRRT “for gl n, it follows that RRG has the same completeness properties of
RRT, i.e.
Pr|ViRRE N Xjoq = 0] = 0(e™P™)

Theorem - Asymptotic optimality

If the Near procedure returns all nodes in ¥V within a ball of volume

=EL y > 24(1 + 1/,),

Under some additional technical assumptions (e.g., on the sampling distribution, on the €
clearance of the optimal path, and on the continuity of the cost function), the best path

in the RRG converges to an optimal solution almost surely, i.e.:
Pr[YRRC = c*] =1

Vol =y
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Computational complexity

= At each iteration, the RRG algorithm executes 0(logn) extra calls to
ObstacleFree when compared to the RRT.

= However, the complexity of the Nearest procedure is Q(logn). Achieved if
using, e.g., a Balanced-Box Decomposition (BBD) Tree.

Theorem - Asymptotic (Relative) Complexity

There exists a constant g € R, such that
OPS[R¢
OPSRRT =

l

= |n other words, the RRG algorithm has not much more computational
overhead over RRT, and ensures asymptotic optimality.
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= RRT algorithm can account for nonholonomic dynamics and modeling errors.

RRT*: A free version of the RRG

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be
propagated along the leaves.

If steering errors occur, subtrees can be re-
computed.

The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.
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RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be
propagated along the leaves.
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of the RRG and RRT.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘

AUTONOMOUS
ROBOTS
LAB



RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be
propagated along the leaves.

If steering errors occur, subtrees can be re-

computed.
The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.
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RRT*: A free version of the RRG

= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be
propagated along the leaves.

If steering errors occur, subtrees can be re-

computed.
The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties O

of the RRG and RRT.
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= RRT algorithm can account for nonholonomic dynamics and modeling errors.

» RRG requires connecting the nodes exactly, i.e., the Steer procedure has to be exact.
Exact steering methods are not available for general dynamic systems.

RRT* Algorithm

RRT*: A free version of the RRG

RRT* is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be
propagated along the leaves.

If steering errors occur, subtrees can be re-
computed.

The RRT* algorithm inherits the asymptoftic
optimality and rapid exploration properties
of the RRG and RRT.
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Rapidly-exploring Random Tree-star (RRT¥)

V e {xinieh E < 0;
fori=1,...,N do:
Xrand < SampleFree;
Xnearest < Nearest(G = (V, E)rxrand);

Xnew € Steer(xnearest» xrand);

. log(card v)\1/@
Xnear < Near (G — (V, E): Xnew mln{yRRG (%) ’ 77}> )

VeVu {xnew};

Xmin < Xnearest) Cmin < COSt(xnearest) + C(Line(xnearestrxnew))
foreach x,..r € X, eqr dO:

if CollisionFree(Xpears Xnew) /N Cost(Xpear) + c(Line(Xnear Xnew)) < Cost(xneqr) then:
Xparent < Parent(Xpeqr);

E « E\{(xparent» xnear)} U {(Xnews Xnear)}s
return ¢ = (V,E);
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RRT* in Action

o Aerial Robotic Contact-based Inspection Planning

ETHzurich [0
- mi and Physical Interaction Control

Autonomous
Systems Lab Kostas Alexis, Georgios Darivianakis, Michael Burri and Roland Siegwart

%,

Continuous- Time _Trajectory Optimization
for Online UAV Replanning

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto,
Roland Siegwart and Enric Galceran
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ARL 2016 Planning Ensemble for Mapping

= Classification: = Robot evaluation:
= Prior environmental knowledge? = Multi-rotor UAV systems
= Active perception and belief-space planning? = Fixed-wing UAV systems
= Possible human co-working? — = ___not limited

= Applicable to “any” robot configuration?

Exploration Path Planning

Coverage Path Planning

Optimal Coverage Efficient Coverage Uniform Coverage
(RRTOT) (SIP) (UC3D)

Autonomous Exploration
(NBVP)

Uncertainty-aware
Exploration & Mapping

1 )
= ‘,/'A
' v

Augmented Readlity Inspection

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer #3838%“”5@
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Assumed Robot Configuration

How to further couple their desing?

l | l

Arohot for which a Localization and Mapping
T o -
- Collision-free Navigation (UNS Yol Sed Aecomie Visual-inertial
- Inspection and reference tracki Otherwise, reformulate the Visual-LiDAR-Inertial
- Autonomous Exploration algorithms to control- Possibly GPS-denied
space
Remote Control Interface Mission Results

Perception and :
State Estimation Module R/ M P
@ T o 1 30 Result

Guidance and Robot Real Motion |
Control = *

v
v
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Example Specific Robot Configuration

Path Planning Position Control Attitude Control
£  |20Hz /| g |200Hz = wa )
Intel i7 ﬁ " Intel i7 .x. " Pixhawk [

a

Aerial Robot

y

VI Odometry

X)

20Hz
2xCamera/IMU d.,

High-Level Processing | Low-Level Processing |

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%g%%%“o”s@



Proposed Planning Ensemble

= Classification: = Robot evaluation:
= NO Prior environmental knowledge = Multi-rotor UAV systems
= Active perception and belief-space planning? = Fixed-wing UAV systems

Focus of this = Possible human co-working?

presentation

= Applicable to “any” robot configuration?

Exploration Path Planning

Coverage Path Planning

Optimal Coverage
(RRTOT)

W HEE] {1 Y=
=41 S
L ¥ \\—
¥ R

Efficient Coverage Uniform Coverage
(SIP) (UC3D)

Autonomous Exploration
(NBVP)

Uncertainty-aware
Exploration & Mapping

1 )

Augmented Reality Inspection,

Augmented Reality-
‘enhanced Inspection
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The Exploration path planning problem

Problem Definition: Volumetric Exploration

The exploration path planning problem consists in exploring a previously unknown
bounded 3D space V c R3. This is fo determine which parts of the initially unmapped
space Vypm =V are free Vg, €V or occupied V.. € V. The operation is subject to
vehicle kinematic and dynamic constraints, localization uncertainty and limitations
of the employed sensor system with which the space is explored.

As for most sensors the perception stops at surfaces, hollow spaces or narrow
pockets can sometimes not be explored with a given setup. This residual space is
denoted as V... The problem is considered fo be fully solved when Vepe U Ve =

V\Vees.

Due to the nature of the problem, a suitable path has to be computed online
and in real-time, as free space to navigate is not known prior 1o its exploration.
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Receding Horizon Next-Best-View Exploration

» Goal: Fast and complete exploration of
unknown environments.

» Define sequences of viewpoints based
on vertices sampled using random trees.

= Select the path with the best sequence
of best views.

= Execute only the first step of this best
exploration path.

» Update the map after each iteration.

= Repeat the whole process in a receding
horizon fashion.
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Exploration Planning (nbvplanner)

S

%
h\(_

&
j

Gain(ny) = Gain(ng_1) + Visible(M, £k)e_>‘c("]’§—1)

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%g%%%“o“s@



Exploration Planning (nbvplanner)

= Environment representation: Occupancy Map >| Path planner |— Robot
Map dividing space V into m € M cubical
volumes (voxels) that can be marked T
either as free, occupied or unmapped. Localization
» Use of the octomap representation to Sensor

enable computationally efficient access
and search.

The Receding Horizon Next-Best-View

adiaellsS e ellelaSeICINAVIINUTERIETHN Exploration Planner relies on the real-time
Jelelel iy ZaelsleliclolNlelalNiccl olelsiR (el ypdate of the 3D map of the environment.
point navigation is inherently supported.

= At each viewpoint/configuration of the
environment &, the amount of space
that is visible is computed as Visible(M, &)
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Exploration Planning (nbvplanner)

= Tree-based exploration: At every
iteration, the nbvplanner spans a
random free of finite depth. Each vertex
of the tree is annotated regarding the
collected Information Gain — a metric of
how much new space is going to be
explored.

Gain(ny) = Gain(ny_,) + Visible(M, &,)e (k1)

» Within the sampled tree, evaluation
regarding the path that overall leads to
the  highest informafion gain is
conducted. This corresponds to the best
path for the given iteration. It is @
sequence of next-best-views as sampled
based on the vertices of the spanned
random tree.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%g%%%“o”s@



Exploration Planning (nbvplanner)

= Receding Horizon: For the extracted best
path of viewpoints, only the first
viewpoint is actually executed.

= The system moves to the first viewpoint of
the path of best viewpoints.

= The map is subsequently updated.

» Subsequently, the whole process is
repeated within the next iteration. This
gives rise to a receding horizon
operation.
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Exploration Planning (nbvplanner) Algorithm

»

»

»

nbvplanner lterative Step

¢o «current vehicle configuration

Initialize Twith y, and, unless first planner call, also previous best branch

Gpest < 0 // Set best gain to zero

Npest < No(&p) // Set best node to root

Ny «Number of nodes in T

while Ny < Njgx OF Gpest == 0 do

»

»

»

Incrementally build T by adding nuew(&new)
Ny < Nr +1
if Gain(Npew) > Gpest then

” Npest < Nnew

¥ Gpest « Gain(nyey,)

if NT > NTOT then

* Terminate exploration

o0 « ExtractBestPathSegment(n,,;)

Delete T

returno
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Exploration Planning (nbvplanner) Remarks

= |nherently Collision-free: As all paths of
nbvplanner are  selected  along
branches within RRT-based spanned
trees, all paths are inherently collision-
free.

= Compuvutational Cost: nbvplanner has a
thin  structure and most of the
computational cost is related with
collision-checking functionalities. The
formula that expresses the complexity of
the algorithm takes the form:

O(Nrlog(Nr) + Nr/r’log(V/r®) + Nr(dhae /r)* log(V/r%))

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%g%%%“o”s@



nbvplanner Evaluation (Simulation)

= Simulation-based evaluation:
Explore a bridge.

= Comparison

with

based exploration.

Frontier-

Receding Horizon Next-Best-View Planner

Volume [ms]

151§

-

0.5

= = =Free
= Unmapped

o m

10 20
ttot [min]

30 40

Volume [ma]

Frontier-Based Planner

1.5}

=

o
3

----- Occupied
.| = = =Free
Unmapped

-

-

I

500 1000 1500
ttot [min] i

AUTONOMOUS
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Extension to Surface Inspection

Problem Definition: Surface Inspection

Given a surface S, find a collision free path o starting at an initial configuration
$init € E that leads to the inspection of the part S;,,, when being executed,

such that there does not exist any collision free configuration from which any
piece of 5\S;,s, could be inspected. Thus, Sy = S\Sres-

Let V, € E be the set of all configurations from which the surface piece s <
S can be inspected. Then the residual surface is given as S,e.s =Uges (s|Ve = 0)

f
)
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nbvplanner Evaluation (Simulation)

= Extension to surface inspection: The robot identifies trajectories that locally ensure
maximum information gain regarding surface coverage.

4000
& 3000 = = = [nspected
g : = Uninspected

— & 2000\ - e ]

E 8 : : | |

3 .
U'.)1000—'1--
0 . . Y —5

0 20 40 60 80 100
tmt [min]
y [m]

x[m]
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nbvplanner Evaluation (Experiment)

ttot=132.2s ttot=184.6s

ttot=253.4sﬁ.
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Proposed Planning Ensemble

= Classification: = Robot evaluation:
= NO Prior environmental knowledge = Multi-rotor UAV systems

= Active perception and belief-space planning = Fixed-wing UAV systems

= Possible human co-working?

= Applicable to “any” robot configuration?

Exploration Path Planning

Coverage Path Planning

Optimal Coverage Efficient Coverage Uniform Coverage
(UC3D)

Autonomous Exploration
(NBVP)

Uncertainty-aware
Exploration & Mapping

1 )
= ‘,/'A
' v

C‘I;

1 |
LiE==g ‘/ =g

Augmented Readlity Inspection

Augmented Reality-
~enhanced Inspection

E il

Ny
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Uncertainty-aware Exploration & Mapping

The overall problem is that of exploring an unknown bounded 3D volume VE c R3,
while aiming to minimize the localization and mapping uncertainty as evaluated
through a metric over the robot pose and landmarks probabilistic belief.

Given a bounded volume VE, find a collision free path o starting at an initial
configuration &;,,;; € Ethat leads to identifying the free and occupied parts Vfiee
and VE. when being executed, such that there does not exist any collision free
configuration from which any piece of VE{V£,.. W%} could be perceived.

Given a V™ c VE, find a collision free path ¢ starting at an initial configuration
o € E and ending in a configuration &¢;,4 € E that aims fo improve the robot’s
localization and mapping confidence by following paths of optimized
expected robot pose and tracked landmarks covariance.
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Recall Robot Configuration

Path Planning

Position Control

20Hz /

q

r

Attitude Control

200Hz S

§
Intel i7 ﬁ: ' Intel i7
20Hz X
2xCamera/IMU d.,

v

Pixhawk

High-Level Processing | Low-Level Processing
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Uncertainty-aware Exploration & Mapping
Receding Horizon Exploration 2) | b) | ) |
and Mapping Planner . /’ 4 /j! o /,!
(rhemplanner) B =1 W =] ,\/ = ]
2| [ NS NN L] ¢
RIS A Wi v ) /
Z Y - . . -
/ ?%sg Ee !
Two-levels q-iL / 4 / e /
Path Planning paradigm d) | e) | f) |
b5 ~’— \*"I/ ~L
pii = o - | o
57 ,"(/. et 7 \ Y ¥—3  [ ¥
= &i #ﬁ éi %Tj ,é)
7 \\\ % ,’l \ \Y \ k\g
<N P :L / :L /
occupied, mapped voxel unexplored voxel ' landmark uncertainty ellipsoid
uncertainty

viewpoint heading .’:‘, V" for iteration / 1" planning level edge [\ 2" planning level edges
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rhemplanner - Exploration Step

b)

a) c)

~——

First Planning Layer

o\ .
\./ 7
) N )X \ ) N ’
¢

N/
N/

(| N NN ]
/
1
e

¥ e S
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rhemplanner - Exploration Step

= Exploration Gain with probabilistic reobservation
ExplorationGain(nf) = ExplorationGain(nkE_l) +
VisibleVolume (M, &x) exp(—Xc(o),_ 1)) +

ReobservationGain(M, P, &) eXp(—)\C(U];E—l,k ))

= Aiming to maximize newly explored space and reobserve space with decreased confidence
of being mapped as occupied.
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Second Planning Layer

rhemplanner - Uncerfainty-aware Step

d)

e) f)

| |
l l

/ 1V

[
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rhemplanner - Uncerfainty-aware Step

= The robot performs onboard localization and mapping
= For the case of our experiments it performs visual-inertial localization
= Can be generalized to different cases given a filter-based approach
= The assumptions are:
= Pose, features and their uncertainties are estimated

= Dense, volumetric mapping takes place

= To get an estimate about its pose, it relies on tracking landmarks from its sensor
systems. The system performs odometry in an EKF-fashion and the overall state of the
filter is:

pose, L,
‘. N T
x=[Tqvbsb,cz|py, - pypo - pyl
robot states, [ features states, [ ¢
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rhemplanner - Uncerfainty-aware Step

= Belief Propagation: in order to idenftify the paths that minimize the robot uncertainty, a

mechanism to propagate the robot belief about its pose and the tracked features has
to be established.

Equations adopted | State Propagation Step - Equations (3) I Filter Update Step - Equations (4) |
from Bloesch et al. F= - r+ v+ w, yi = bj(w(i;)) + n;
“Robust Visual Inertial : ~ X & ~1 oo dm
: vV=—-w v+Tf+ H. = A ) — (1.
Odometry Using a y = —q() a (&) ! j'(ﬁ('u?))d,,u ()
Direct EKF-Based qa=-d By stacking the above terms for all visible features, standard EKF
Approach” b f = Wy update step is directly performed to derive the new estimate of the
bu = Why robot belief for its state and the tracked features.
cC =W,
7= W- | Notation |
i, = NT(,u Ny — l 0 1} NT( ) vy Wy, * — skew symmetric matrix of a vector, f — proper acceleration
J J -1 0 J d(pj) e measurement, w — rotational rate measurement, f — biased
pj = — M?@v Jd (p;) + wp. corrected acceleration, & — bias corrected rotational rate, N7 (1) —
4 projection of a 3D vector onto the 2D tangent space around the
f—f—bs—w bearing vector, g — gravity vector, w, — white Gaussian noise
~ - bf / processes, 7 () — pixel coordinates of a feature, b; (7w (f1;)) — a
WEW TPl W 2D linear constraint for the j* f ich i 1
A ~ X 7" feature which is predicted to be
E’V o Z(Qf +w”c) visible in the current frame with bearing vector fi;
wy = z(w)
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rhemplanner - Uncertainty-aware Step

e el | State Propagation Step

belief about its pose F=—Xr 4+ v+ W

and the tracked
landmarks:
Prediction step
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rhemplanner - Uncerfainty-aware Step

Propagate the robot’s Filter Update Step

belief about its pose y;i =bj(m(f;)) + n;
and the tracked Lo dm
landmarks: H; = Aj(#(”j))@(“j)
Update step By stacking the above terms for all visible landmarks, standard EKF update

step is directly performed to derive the new estimate of the robot belief for
its state and the tracked features.

» |denfify which viewpoints are 'Xj' i
expected to be visible given the vil = RYW [ k-1 L W
next pose and the known map P c I D, ?1) +1c

J

= Compute the propagated belief Et,l — (I — Kt Ht ) it,l |

covariance martrix
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rhemplanner - Uncerfainty-aware Step

Propagate the robot’s Filter Update Step

belief about its pose y;i =bj(m(f;)) + n;
and the tracked Lo dm
landmarks: H; = Aj(#(“j))@(“j)
Update step By stacking the above terms for all visible landmarks, standard EKF update

step is directly performed to derive the new estimate of the robot belief for
its state and the tracked features.

ke
S

Y;| =Rc |Ki'5- |v| | +T¢
Z; ’

Et,l — (I—Kth)it,l |

[

-
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rhemplanner - Uncerfainty-aware Step

= Uncertainty optimization: to be able to derive which path minimizes the robot
uncertainty about its pose and the tracked landmarks, a metric of how small the
covariance ellipsoid is has to be defined.

% 4 »

&

= What metric?

é
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rhemplanner - Uncerfainty-aware Step

= Uncertainty optimization: to be able to derive which path minimizes the robot

uncertainty about its pose and the tracked landmarks, a metric of how small the
covariance ellipsoid is has to be defined.

= D-optimality metric:
Dope(0") = exp(log([det(E,, 7 (™)) /7 111))
BeliefGain (o))

Dopt(aé\z/[)

Broadly: maximize the determinant of the information matrix X'X of

the design. This criterion results in maximizing the differential Shannon
information content of the parameter estimates.
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rhemplanner Algorithm

» &y <current vehicle configuration First Planning Step

» Initialize TE with &,
v gE <0 // Set best exploration gain to zero
Y Npest < No(&p) // Set best best exploration node to root
* NE «Number of nodes inTE
» While NE < NE_, or gf,, == 0do
» IncrementallybuildTE by adding nE,, (¢5,,)
» NE<NE+1
» if ExplorationGain(nk,,) > gt then

E E
¥ Nnew < Nnew

» gk, < ExplorationGain(nZ,,,)
» if Nf > Nf,; then
* Terminate planning

> ofy,nE,, &py « ExtractBestPathSegment(n,,g;)

*  Sg, < LocalSet(Sgy) |
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rhemplanner Algorithm

Propagate robot belief along ogy Second qunning Step

»

»

»

a<1

// number of admissible paths

g¥ « BeliefGain(cty)

Obest < 9o // straight path belief gain

M

M

Opest < ORH
while Nf' < N}, or V(T™) n= @S¢, do

» Incrementally buildT™ by adding nfL,, (&new)

* Propagate robot belief from current to plannedvertex

* if &yew € Sgp then

»

»

»

return oM

Add new vertex n,]‘{’ew at égy and connect
a<—a+1

o « ExtractBranch(nlL,)

g¥ « BeliefGain(alh)

if gM < g, then

» oM gl

M M
” Ibest < Ya
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rhemplanner Complexity Analysis

RRT construction

Collision checking

O(NF log(N2)), S— E,M | O(NZ/r*log(V®/r®)), S — E, M

15t planning level gain computation

O(NZ (P /r)* log(V" /r?))

1T ax

27¢ planning level gain computation

O(Np" (dyins /) log(VZ [ro)ly + nar (127 +17) + nar(Ip + 1y))
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rhemplanner Evaluation (Experimental)

Path Planning

Position Control

q

r

Attitude Control

200Hz S

§ |20Hz
| Intel i7 %
X|M
VI Odometry
20Hz X
2xCamera/IMU gy,

” P|xhawk

ion

High-Level Processing

| Low-Level Processing
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Uncertainty-aware Receding Horizon
Exploration and Mapping using Aerial Robots

Christos Papachnstos Shehryar Khattak, Kostas Alexis

Initialization

AUTONOMOUS
L ROBOTS
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rhemplanner Evaluation (Experimental)

Initialization

Exploration Step
SEERSTOS

| Belief Propaga’rion_;,, BN

| [5]
l"‘ “"‘F‘-'"‘ = — =] ——!=-1

)
e Landmark | current pose

> - c—
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rhemplanner Evaluation (Experimental)

== B e

 Offline HD-camera reconstructio Online reconstruchon from robot
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Autonomous Exploration in Visually-degraded
Dark Environments using a NIR-IMU-Depth Sensor

C. Papachristos, S. Khattak, K. Alexis
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Move beyond “reach the goal” paradigm

= Mission: “Do the following in any order and
always avoid the black demo area:

= Water the plant.

» Clean the blackboard.

» Turn off the coffee maker.

= Pick up vacuum cleaner from the supply room,

then vacuum the orange room and dust its
table”
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Move beyond “reach the goal” paradigm

How can | plan to
execute a complex
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Move beyond “reach the goal” paradigm

‘l
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Based on work from M. Moll, Rice University, Houston, TX

Move beyond “reach the goal” paradigm

Autonomous Execution of
a Complex Mission

Reasoning
over tasks

Al

‘l
Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘
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Move beyond “reach the goal” paradigm

= Ability to plan for general complex robofic
systems using sampling-based motion
planners.
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Solution employing Linear Temporal Logic

Agcosafe, Adsafe High-level

» LTL to DFA —® discrete planner
M X Aqﬁ-r:()sn_.fﬁ X Ad).@ﬂfﬁ

| s, 1
O
. M D
Abstraction QO |[Synergy Layer

Specification

c C

Robot System 0 9

O O

O £

0 O

LTL: Linear Temporal Logic Obstacle his

DFA: Deterministic Finite Automaton

Discovered Low-level Planner
Execution (Sampling-based
_ Motion Planner)
confinuous
trajectory
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Solution employing Linear Temporal Logic

Agcosafe: Assafe High-level

» LTL to DFA —® discrete planner
M x Aq}r:()s(l_f e X Arj).s‘afﬁ

e

Specification

Guides

c C
Robot System Abstraction Synergy Layer|.Q 9
O O

O £

Q0

Obstacle his

Discovered Low-level Planner
Execution (Sampling-based
Motion Planner)

confinuous [
trajectory
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Solution employing Linear Temporal Logic

dsafé
LTL to DFA

cosafes

High-level
discrete planner
M x Aq}r:()sa.f e X Ar;-').s‘afﬁ

§ R
O
M 8 Synergy Layer

Specification

c C

Robof System Abstraction 0.0
T O

S £

Q0

Obstacle hil=

Discovered Low-level Planner
Execution (Sampling-based
Motion Planner)

continuous g
trajectory
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Solution employing Linear Temporal Logic

High-level
discrete planner
JM X Aq}-r:()sa.f e X A(;-'J.mf(i

LTI

Specification

» LTL to DFA

Guides

c C

Robot System Abstraction Synergy Layer|.Q .2
O O

O E

Q0

Obstacle s

Discovered Low-level Planner
Execution (Sampling-based
Motion Planner)

confinuous [
trajectory
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Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) or linear-time temporal logic is a modal temporal logic with
modalities referring to time.

= |n LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be
true, a condition will be true until another fact becomes true, etc.

LTL was first proposed for the formal verification of computer programs by Amir Pnueli in
1977.

LTL is Built from:
= A set S of proposition variables: S = {py, p1, ..., P}
= Boolean connectivities: And (&), Or (]), Not (7)

= Temporal connectivities: Next (X), Eventually (F), Always (G), Unfil (U)

Traditionally used to successfully check properties of hardware and software.
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Syntactically Co-Safe LTL

= Co-safe LTL m
pi=m|-m[dNVP|ONG| X | OU G| F ¢
= Examples: m

o = F pickup
O=F pr NF poF ps N F py
¢ = F (pickup A X (—pickup U (dropof f f1V dropoff f2))

Co-safe LTL - reduced subset of full LTL
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Syntactically Co-Safe LTL

= Co-safe LTL m
p=m|T|dVP|oNP| X P|oU S| F ¢
= Examples: m
¢ = F pickup
d=F pi ANF poF p3s AN F py
o = F (pickup A X (—pickup U (dropof f fL VvV dropoff f2))

= DFA: from a co-safe LTL ¢, a Deferminisfic Finite Automaton A, can be constructed.
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Deterministic Finite Automate (DFA)

= |In the theory of computation, a Deterministic Finite Automaton (DFA)—also known as @
deterministic finite accepter (DFA) and a deterministic finite state machine (DFSM)—is a
finite-state machine that accepts and rejects strings of symbols and only produces a unique
computation (or run) of the automaton for each input string.

Start

\ ~ 1 T (0 T»
1
0
\]:/ \0/
= Upon reading a symbol, a DFA jumps deterministically from one state to another by following

the transition arrow/transition prescribed.

» A DFA is defined as an abstract mathematical concept, but is offten implemented in
hardware and software for solving various specific problems. For example, a DFA can model
software that decides whether or not online user input such as email addresses are valid.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer &§§§8¥QMOUS@



Planning from LTL specifications

= Co-safe LTL m
p=m|T|dVP|oNP| X P|oU S| F ¢
= Examples: m
¢ = F pickup
d=F pi ANF poF p3s AN F py
o = F (pickup A X (—pickup U (dropof f fL VvV dropoff f2))

= DFA: from a co-safe LTL ¢, a Deferminisfic Finite Automaton A, can be constructed.
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Solution:

Automation ACP that

encodes formula ¢

as A monitor

Plan,

Planning from LTL specifications

= |n the future visit p1, and then visit
region p2 or p3.

1 LTL

9 =F (p AND F (p, OR p;))

Automata
Conversion

use

obstacles

.

Q,
[

P

V

V

Regions of Interest (propositions)
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Sampling-based planning alone is slow

High-level
discrete planner
JM X Aq}-r:().ﬂm_.f e X A(;-'J.mf(i

b

Synergy Layer

LTL fo DFA

Specification

Guides

Roboft System

Abstraction

Exploration
Information

Obstacle

Discovered Low-level Planner
Execution (Sampling-based
Motion Planner)

confinuous [
trajectory
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Sampling-based planning alone is slow

& " High-level

» LTL to DFA ,“ discrete planner

M X Aqﬁ-r:()sn_.fe X Ad)f;ﬂfﬁ
I Abstraction

Specification

sy

IonN

C

Robot System Synergy Layer[.© .2
< 3
O E
Q9
Obstacle hs

Discovered Low-level Planner

Execution N (Sampling-based

_ Motion Planner
continuous

and not recommended frajectory
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Sampling-based planning alone is slow

& " High-level

» LTL to DFA ,“ discrete planner

M X Aqﬁ-r:()sn_.fe X Ad)f;ﬂfﬁ
I Abstraction

Specification

sy

IonN

C

Robot System Synergy Layer[.© .2
< 3
O E
Q9
Obstacle hs

Discovered Low-level Planner

Execution N (Sampling-based

_ Motion Planner
continuous

New scheme is needed frajectory
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Sampling-based planning alone is slow

-Aqﬁcosa fes Aﬁf"?ﬂ-fe High-level

LTL to DFA p— discrete planner
M x AG)(,‘O.‘E(I-f ¢ X Aq')safﬁ

Specification

= 7y
§ |
O
> c C
Robot System Abstraction O |Synergy Layer|.© .2
O O
S E
0
Obstacle nis
Discovered Low-level Planner
Execution (Sampling-based
- Motion Planner)
continuous
e trajectory
@ S
VN A
A

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘§§§8¥QMOUS@



SYyCLoP — A synergistic framework

Aqﬁcosa fe, A¢58ﬂf€ ng h-level

LTL to DFA p— discrete planner
M x Aq)r:o.w; fe X Aq')sa fe
A

Specification

c C
Robot System Abstraction Synergy Layer|.Q .2
C O
S E
g9
Obstacle hs
Discovered Low-level Planner
oy . ;
3 Execution (Sampling-based
N - Motion Planner)
Gima T continuous
frajectory

SyCLoP: Synergistic combination of layers of planning

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘g}%g%%%“o“s@



SYyCLoP — A synergistic framework

Aqﬁcosa fe, Aqbsafe

High-level
LTL to DFA p— discrete planner
M x AG)CO.‘:‘(I-f(‘Z X Aq')safe

Specification

= A
.':’.;y - %
5 Skt =
5;,::;:‘_‘15*'{':?3#(35?;!’- , Robot System Abstraction O |Synergy Layer
ngPil Yy
=

Exploration
Information

Obstacle

g ' E 5 Discovered
E ¥ )
\ . o 1P \.---‘ 7 :\_ h - 1 .
R Ry _;LT.E*,‘.{?,& , #;;_,. Low-level Planner
" - v Tl I - 3 1 . . _
g A9 ENOME iy ;Jii Execution (Sampling-based
TR d Motion Planner)
N G, ) S .
0 e o continuous
AT Sy (& E trajecto
55 Y Pu AT
R et N & IANEG o J ry
Loyl B LY AT D
g ey ’L.‘:!&;r."& Il _!sfg? "
(I 2, ) .,.‘..&--*eE!.,l' s -5 3 W S
O R R N RN
(VA R g B |
= N PGS g, IEA SR N Y
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SYyCLoP — A synergistic framework

-Acbcosa fe, AﬁﬁSﬂf@f High-level

LTL to DFA p— discrete planner
M x AG)CO.‘:‘(I-f(‘Z X Aq')safe

7

Synergy Layer

Specification

Guides

Robot System Abstraction

Exploration
Information

Obstacle

Discovered Low-level Planner
Execution (Sampling-based
- Motion Planner)
continuous
trajectory
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SYyCLoP — A synergistic framework
;

Specification

Agcosafe; Agsafe High-level

LTL to DFA p— discrete planner
M x AG)CO.‘:‘(I-f(‘Z X Aq')safe

= 7'y
§ |
O
> c C
Robot System Abstraction O |Synergy Layer|.© .2
O O
5
29
Obstacle nis
Discovered Low-level Planner
Execution (Sampling-based
- Motion Planner)
continuous
frajectory
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SYyCLoP — A synergistic framework

Specification

chﬁcosa fe, A¢Sﬂf€ High-level

LTL to DFA p— discrete planner
M x AG)CO.‘:‘(I-f(‘Z X Aq')srzfe

. A
§ |
O
> c C
Robot System Abstraction O |Synergy Layer|.© .2
O O
o £
[eRe
Obstacle nis

Discovered Low-level Planner
Execution (Sampling-based
- Motion Planner)
continuous
trajectory
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Sampling-based planning alone is slow

Specification

Roboft System

Aqbcosa fes Atbsa.fe

» LTL to DFA

Abstraction

Obstacle
Discovered

Execution

continuous

trajectory

A

High-level
discrete planner
M x Aq}r:()sa.f e X Arj).s‘afﬁ

sy

c c
Synergy Layer| © .8
T O
0 £
g 5
hls

(Sampling-based
o’rion Planner

Low-level Planner
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Sampling-based planning alone is slow

Specification

Roboft System

Aqbcosa fes Atbsa.fe

» LTL to DFA

Abstraction

Obstacle
Discovered

Execution

continuous

trajectory

A

High-level
discrete planner
M x Aq}r:()sa.f e X Arj).s‘afﬁ

sy

c c
Synergy Layer| © .8
T O
0 £
g 5
hls

(Sampling-based
o’rion Planner

Low-level Planner
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Synergistic framework

Co-Safe LTL
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A guiding decomposition is needed

Co-Safe LTL

Automaton Abstraction for the Overall discrete abstraction/
abstraction for workspace and robot decomposition
co-safe LTL
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Sampling-based planning alone is slow

A@L‘
1 ’
> Abstraction }

L N

High-level
discrete planner
JM X Aq}-r:().ﬂm_.f e X A(fﬁsrlfﬁ

b

Synergy Layer]|.

Specification

Guides

Roboft System

Obstacle l I
Discovered Low-level Planner
Execution Sampling-baseg
_ dlotion Planng
confinuous
trajectory
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Sampling-based planning alon: @'
(@)

_ —
Specification 1@"
Roboft System » Abstraction }

=7 High- N/
) e

discrete FodaM
JM X Aqbr:()sn_.f e X -Aq').mf e

b

Synergy Layer

Guides

Qlorafion
Information

Obstacle l I
Discovered Low-level Planner
Execution Sampling-baseg
. dotion Planng
continuous

trajectory
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Moving beyond “reach the goal” paradigm

= Mission:

= “Do the following in any order and always avoid
the black demo area:

= Water the plant
» Clean the blackboard
» Turn off the coffee maker ared

» Pick up vacuum cleaner from the supply o

room, then vacuum the orange room and o
dust its table.” 7 eyl
e

ZE
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What we gain this way

Safe LTL task planning

Hybrid systems encode behaviors and
planning tasks decomposition

Changes in the environment are handled
more easily

Integration of more complex cases such
as manipulation and planning under e
uncertainty. A

A A

ZE
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Code Examples and Tasks

» https://qgithub.com/unr-
arl/autonomous mobile robot design_course/tree/master/matlab/path-planning/rrt

» hitps://github.com/unr-arl/autonomous_mobile robot design course/tree/master/ROS/path-
planning/structural-inspection

» https://github.com/unr-arl/autonomous _mobile robot design course/tree/master/ROS/path-
planning/autonomous-exploration

» https://qithub.com/unr-
arl/DubinsAirplane/tree/52ce13e4aé6dea?005da702095e6b0acbb175e008

» https://qgithub.com/unr-

00 arl/autonomous mobile robot design course/tree/master/python/DubinsCar
o090 = hitps://qithub.com/unr-
® @ @ arl/autonomous_mobile robot design _course/tree/master/python/HAV_BVS
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https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/matlab/path-planning/rrt
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-planning/structural-inspection
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-planning/autonomous-exploration
https://github.com/unr-arl/DubinsAirplane/tree/52ce13e4a6dea9005da702095e6b0acbb175e008
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/python/DubinsCar
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/python/HAV_BVS

FiInd out more

= Further direct resources on our own work

= hitp://www.autonomousrobotslab.com/autonomous-navigation-and-exploration.html - our papers

» hitp://www.autonomousrobotslab.com/holonomic-vehicle-bvs.hitml

» hitp://www.autonomousrobotslab.com/dubins-airplane.html

» hitp://www.autonomousrobotslab.com/collision-free-navigation.html

» hitp://www.autonomousrobotslab.com/structural-inspection-path-planning.htmil

= Good resources to Study
» hitp://biorobotics.ri.cmu.edu/book/

» hitp://msl.cs.viuc.edu/planning/

= Resources for algorithms
= hitp://ompl.kavrakilab.org/

» hitp://moveit.ros.org/

» hitps://github.com/ros-planning/3d _navigation

» hitp://planning.cs.viuc.edu/

» hitp://plannerarena.org/

» hitps://spot.rde.epita.fr/ and http://www.cs.rice.edu/~mmoll/icaps2016/It12a.h.himl

» hitps://github.com/ethz-asl

» hitps://github.com/unr-arl
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http://www.autonomousrobotslab.com/collision-free-navigation.html
http://www.autonomousrobotslab.com/structural-inspection-path-planning.html
http://biorobotics.ri.cmu.edu/book/
http://msl.cs.uiuc.edu/planning/
http://ompl.kavrakilab.org/
http://moveit.ros.org/
https://github.com/ros-planning/3d_navigation
http://planning.cs.uiuc.edu/
http://plannerarena.org/
https://spot.lrde.epita.fr/
http://www.cs.rice.edu/~mmoll/icaps2016/ltl2a.h.html
https://github.com/ethz-asl
https://github.com/unr-arl

Kavraki, Lydia E., et al. "Probabilistic roadmaps for path planning in high-dimensional
configuration spaces." IEEE transactions on Robotics and Automation 12.4 (1996): 566-580.

LaValle, Steven M. "Rapidly-exploring random trees: A new tool for path planning." (1998).

Nedunuri, Srinivas, et al. "SMT-based synthesis of integrated task and motion plans from plan
outlines." Robotics and Automation (ICRA), 2014 IEEE International Conference on. |EEE,
2014.

Bry, Adam, and Nicholas Roy. "Rapidly-exploring random belief trees for motion planning
under uncertainty." Robotics and Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011.

A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View'
Planner for 3D Exploration”, IEEE International Conference on Robotics and Automation 2016
(ICRA 2016), Stockholm, Sweden

A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart, "Structural
Inspection Path Planning via lterative Viewpoint Resampling with Application to Aerial
Robotics", IEEE International Conference on Robotics & Automation, May 26-30, 2015 (ICRA
2015), Seattle, Washington, USA .

Christos Papachristos, Shehryar Khattak, Kostas Alexis, "Uncertainty-aware Receding Horizon
Exploration and Mapping using Aerial Robots", IEEE International Conference on Robotics
and Automation (ICRA), May 29-June 3, 2017, Singapore

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer ‘fﬁ§§§8¥é’m“@

f
)



Appendix

= Dijkstra’s Algorithm

= How do we go from UNR to Crystal Bay or vice
versage

= Single-source shortest path problem
= Weighted graph G = [E,V]
= Find path from source vertex s to vertices v
= Works with both directed and undirected graphs
dist[s] « O

forall v € V-{s}
do dist[v] « inf

S « empty
Q « 0
while Q ! « 0
S « S Uu
forall v €neighbors([u]
do if dist[v] > dist[u] + w(u,Vv)
then d[v] <« d[u] + w(u,vVv)
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Extra slides for introduction on LTL

Appendix: Kripke Solution

= A Kripke structure is a variation of the transition system, originally proposed by Saul
Kripke, used in model checking to represent the behavior of a system. It is basically a

graph whose nodes represent the reachable states of the system and whose edges
represent state transitions.

ik
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

= |dea:

= |TL as a temporal logic to express properties of paths in Kripke structures.
= Syntax:

= |TL syntax contains rules for temporal operators.
= Semantics:

= |nterprets the meaning of LTL expressions.

= Kripke structures are used to define semantics.

“l
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

= Syntax of LTL (1/2):
= |inear Temporal Logic reuses concepts from first order logic
» Atomic propositions (labels of states in Kripke structures)
= Boolean operators
= Temporal operators
= Evaluates ordering of states in computation (path)

= Temporal operators
= X (next)
= Requires that a property holds in the next state of the path
= [ (eventually)
= |s used to assert that a property will hold at some state in the path
= G (always, globally)
= Specifies that a property holds at every state on the path
= U (a Until b)

= There is a state on the path where b holds, and at every state before that, a holds

“l
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

= Syntax of LTL (2/2):

= The set of propositional logic formulae over a set of atomic propositions (AP) is defined by the
following rules:

= TRUE is a formula
= Any atomic proposition is a formula
= |f f and g are formulae, then so are:
» —f, fvg andfAg
» xf
» Ff
= Gf, and
» fUg

“l
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

= Semantics of LTL: defined based on paths in Kripke structures.

= Kripke structure M = (S, Sy, R, L) with set § of states, a transition relation R, and a labeling
function L, assigning sets of atomic propositions to states.

= A pathin M is an infinite sequence of states T = s, s, ... 5.1. (55, 8;41) €E R foralli =0

= 1t is the suffix of = starting at s;

“l
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

= |f fis a formula, M, s |=f means: in state s of the Kripke structure M holds formula f

= Each formulais a path formula. Path  satisfies f, IF its first state safisfies if.

» M,m|= feM,sy| = fwherem =sg,s;

“l
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Extra slides for introduction on LTL

Appendix: Linear Temporal Logic

(=) s
= Example:

= 11 ={a}, {a,b}, {a,b.,c}, {a,b,c,d}, {a,b,c,d.i}, {ab,c.dii}..

“l
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(Rledise ask your question
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