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Course Outline

 A brief introduction

 What path planning is about and some basic notes

 Collision-free Navigation through PRM, RRT and RRT*

 An intro to some basic methods for collision-free motion planning

 Unknown Area Exploration Path Planning

 Methods to explore unknown environments

 Unknown Area Exploration Path Planning under Uncertainty

 Methods to explore unknown environments while maintaining localizability

 Integrated Task and Motion Planning

 And a bit of introduction on linear temporal logic

 Thoughts for a Curiosity-aware Exploration planner

 Thoughts for a next path planning contribution
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How do I plan 

my motion and

actions?
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What is Path Planning rougly?

 Determining the robot path based on a set of goals and objectives, a set of robot

constraints and subject to a representation and map of the environment.
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Trends in Robotics/Motion Planning

 Classical Robotics (mid-70’s)

 Exact models

 No sensing necessary  Reactive Paradigm (mid-80’s)

 No models

 Relies heavily on good sensing

 Hybrids (since 90’s)

 Model-based at higher levels

 Reactive at lower levels

 Probabilistic Robotics (since mid-90’s)

 Seamless integration of models and sensing

 Inaccurate models, inaccurate sensors

Notes from G. Hager http://voronoi.sbp.ri.cmu.edu/~motion
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Overview of Concepts

 Planning Tasks

 Navigation

 Coverage

 Exploration

 Target follow

 Localization

 Mapping

 Properties of the Robot

 Degrees of Freedom

 Non/Holonomic

 Kinematic vs Dynamic

 Algorithmic Properties

 Optimality

 Computational Cost

 Completeness

 Resolution completeness

 Probabilistic
completeness

 Online vs Offline

 Sensor-based or not

 Feedback-based or not
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 Properties of the

Environment

 Static / Dynamic

 Deterministic / 

Uncertain

 Known / Unknown



Indicative Examples
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Example of a world (and a robot)
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Fundamental Problem of Path Planning

 Problem Statement:

 Compute a continuous sequence of collision-free robot configurations connecting

the initial and goal configurations.

 Geometry of the environment

 Geometry and kinematics of the robot

 Initial and goal configurations
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Path Planner
 Collision-free path



Fundamental Problem of Path Planning

 Problem Statement:

 Compute a continuous sequence of collision-free robot configurations connecting

the initial andgoal configurations.

 Motion Planning Statement for collision-free navigation

 If 𝑊 denotes the robot’s workspace, and 𝑊𝑂𝑖 denotes the i-th obstacle, then the
robot’s free space, 𝑊𝑓𝑟𝑒𝑒 , is defined as: 𝑊𝑓𝑟𝑒𝑒 = 𝑊 − (∪𝑊𝑂𝑖) and a path 𝑐 is

𝑐: 0,1 → 𝑊𝑓𝑟𝑒𝑒, where 𝑐(0) is the starting configuration 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑐(1) is the goal

configuration 𝑞𝑔𝑜𝑎𝑙.
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Fundamental Problem of Path Planning

 Problem Statement:

 Compute a continuous sequence of collision-free robot configurations connecting

the initial andgoal configurations.

 Motion Planning Statement for collision-free navigation

 If 𝑊 denotes the robot’s workspace, and 𝑊𝑂𝑖 denotes the i-th obstacle, then the
robot’s free space, 𝑊𝑓𝑟𝑒𝑒 , is defined as: 𝑊𝑓𝑟𝑒𝑒 = 𝑊 − (∪𝑊𝑂𝑖) and a path 𝑐 is

𝑐: 0,1 → 𝑊𝑓𝑟𝑒𝑒, where 𝑐(0) is the starting configuration 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑐(1) is the goal

configuration 𝑞𝑔𝑜𝑎𝑙.



Coverage Path Planning Problem

 Problem Statement:

 Consider a 3D structure to be inspected and a system with its dynamics and

constraints and an integrated sensor, the limitations of which have to be

respected. The 3D structure to be inspected is represented with a geometric form

and the goal is to calculate a path that provides the set of camera viewpoints

that ensure full coverage subject to the constraints of the robot and the

environment.
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 Geometry of the environment

 Geometry and kinematics of the robot

 Structure to be inspected

Path Planner
 Full-coverage path



Coverage Path Planning Problem

 Problem Statement:

 Consider a 3D structure to be inspected and a system with its dynamics and

constraints and an integrated sensor, the limitations of which have to be

respected. The 3D structure to be inspected is represented with a geometric form

and the goal is to calculate a path that provides the set of camera viewpoints

that ensure full coverage subject to the constraints of the robot and the

environment.

 Geometry of the environment

 Geometry and kinematics of 
the robot

 Structure to be inspected

 Full coverage path

Path Planner



Exploration of Unknown Environments

 Problem Statement:

 Consider a 3D bounded space 𝑉 unknown to the robot. The goal of the

autonomous exploration planner is to determine which parts of the initially
unmapped space are free 𝑉𝑓𝑟𝑒𝑒 or occupied 𝑉𝑜𝑐𝑐 and essentially derive the 3D

geometric model of the world.
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 Bounds but no specific knowledge of 

the environment

 Geometry and kinematics of the robot

 Online 3D mapping
Path Planner

 Next Exploration Path



Exploration of Unknown Environments

 Problem Statement:

 Consider a 3D bounded space 𝑉 unknown to the robot. The goal of the

autonomous exploration planner is to determine which parts of the initially
unmapped space are free 𝑉𝑓𝑟𝑒𝑒 or occupied 𝑉𝑜𝑐𝑐 and essentially derive the 3D

geometric model of the world.

 No knowledge of the 

environment

 Online 3D Mapping

 Efficient exploration per 

step of execution.

Path Planner



Task and Motion Planning

 Problem Statement:

 Execute a complex, multi-objective mission that contains an ordered set of tasks

and implies the derivation of the plan per task.
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 Map of the environment

 Geometry and kinematics of the robot

 Ordered set of task goals

Path Planner
 Execution path
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The motion planning problem

 Consider a dynamical control system defined by an ODE of the form:

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥𝑖𝑛𝑖𝑡 (1)

 Where is 𝑥 the state, 𝑢 is the control.

 Given an obstacle set 𝑋𝑜𝑏𝑠, and a goal set 𝑋𝑔𝑜𝑎𝑙, the objective of the motion

planning problem is to find, if it exists, a control signal 𝑢 such that the solution
of (1) satisfies 𝑥 𝑡 ∉ 𝑋𝑜𝑏𝑠 for all 𝑡 ∈ 𝑅+, and 𝑥 𝑡 ∈ 𝑋𝑔𝑜𝑎𝑙 for all 𝑡 > 𝑇, for some

finite 𝑇 ≥ 0. Return failure if no such control signal exists.

 Basic problem in robotics

 Provably hard: a basic version of it (the Generalized Piano Mover’s problem)

is known to be PSPACE-hard.
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Motion planning in practice

 Many methods have been proposed to solve such problems in practical

applications:

 Algebraic planners: Explicit representation of obstacles. Use complicated algebra

(visibility computations/projections) to find the path. Complete, but impractical.

 Discretization + graph search: Analytic/grid-based methods do not scale well to

high dimensions. Graph search methods (A*, D*, etc.) can be sensitive to graph

size. Resolution complete.

 Potential fields/navigation functions: Virtual attractive forces towards the goal,
repulsive forces away from the obstacles. No completeness guarantees; unless

“navigation functions” are available – very hard to compute in general.

 These algorithms achieve tractability by foregoing completeness altogether,

or achieving weaker forms of it, e.g. resolution completeness.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Sampling-based algorithms

 A proposed class of motion planning algorithms that has been very

successful in practice is based on (batch or incremental) sampling methods:

solutions are computed based on samples drawn from some distribution.

Sampling algorithms retain some form of completeness, e.g., probabilistic or

resolution completeness.

 Incremental sampling methods are particularly attractive:

 Incremental sampling algorithms lend themselves easily to real-time, on-line

implementation.

 Applicable to very generic dynamical systems.

 Do not require the explicit enumeration of constraints.

 Adaptively multi-resolution methods (i.e. make your own grid as you go along, up

to the necessary resolution).
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Probabilistic RoadMaps (PRM)

 Introduced by Kavraki and Latombe in 1994.

 Mainly geared towards “multi-query” motion planning problems.

 Idea: build (offline) a graph (i.e., the roadmap) representing the
“connectivity” of the environment – use this roadmap to find paths quickly at

run-time.

 Learning/pre-processing phase:

 Sample 𝑛 points from 𝑋𝑓𝑟𝑒𝑒 = [0,1]𝑑\𝑋𝑜𝑏𝑠.

 Try to connect these points using a fast “local planner” (e.g. ignore obstacles).

 If connection successful (i.e. no collisions), add an edge between the points.

 At run-time:

 Connect the start and end goal to the closest nodes in the roadmap.

 Find a path on the roadmap.

 First planner ever to demonstrate the ability to solve generic planning

problems in > 4-5 dimensions!
Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Probabilistic RoadMap example

 “Practical” algorithm:

 Incremental construction.

 Connects points within a radius r, starting from “closest” ones.

 Do not attempt to connect points that are already on the same connected

component of the RPM.

 What kind of properties does this algorithm have? Will it find a solution if there

is one? Will that be an optimal solution? What is the complexity of the

algorithm?
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Probabilistic Completeness

 Definition – Probabilistic Completeness:

 An algorithm ALG is probabilistically complete if, for any robustly feasible

motion planning problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , then:

lim
𝑁→∞

Pr 𝐴𝐿𝐺 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃 = 1

 A “relaxed” notion of completeness

 Applicable to motion planning problems with a robust solution. A robust solution

remains a valid solution even when the obstacles are “dilated” by small small 𝛿.

robust NOT robust
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Asymptotic Optimality

NOT robust robust

 Definition – Asymptotic Optimality:

 An algorithm ALG is asymptotically optimal if, for any motion planning

problem defined by 𝑃 = 𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 and function 𝑐 that admit a robust

optimal solution with finite cost 𝑐∗,

𝑃 lim
𝑖→∞

𝑌𝑖
𝐴𝐿𝐺 = 𝑐∗ = 1

 The function 𝑐 associates to each path 𝜎 a non-negative 𝑐(𝜎), e.g. 𝑐 𝜎 =

𝜎׬ Χ 𝑠 𝑑𝑠

 The definition is applicable to optimal motion planning problems with a robust

optimal solution. A robust optimal solution is such that it can be obtained as a limit

of robust (non-optimal) solutions.
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Complexity

 How can we measure complexity for an algorithm that does not necessarily

terminate?

 Treat the number of samples as the “size of the input” (Everything else stays

the same).

 Also, we analyze complexity per sample: how much effort (time/memory) is

needed to process one sample.

 Useful for comparison of sampling-based algorithms.

 Cannot compare with deterministic, complete algorithms.
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Simple PRM (sPRM)

 The simplified version of the PRM algorithm has been shown to be

probabilistically complete.

 Moreover, the probability of success goes to 1 exponentially fast, if the

environment satisfies “good visibility” conditions.

 New key concept: combinatorial complexity vs “visibility”.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ∪ 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒𝑖 𝑖=1,,…,𝑁−1; 𝐸 ← 0;

foreach 𝑣 ∈ 𝑉 do:

𝑈 ← 𝑁𝑒𝑎𝑟(𝐺 = 𝑉, 𝐸 , 𝑣, 𝑟)\ 𝑣 ;

foreach 𝑢 ∈ 𝑈 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑣, 𝑢) then 𝐸 ← 𝐸 ∪ 𝑣, 𝑢 , (𝑢, 𝑣)}
return 𝐺 = 𝑉, 𝐸 ;

sPRM Algorithm

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Operation Concept of PRM

 Learning Phase:

 Initially empty graph

 A configuration is randomly chosen

 If this configuration lies in the free space – add

 Repeat until N vertices are added

 For each new configuration select k-closest neighbors

 Local planner adds vertex q to q’– IF planner is successful then edge is added

 Finding the path:

 Given starting vertrex ginit and end vertex qgoal

 Find k-nearest neighbors of qinit and qgoal in roadmap, plan local path Δ

 Roadmap graph may have disconnected components

 Need to find connections from qinit, qgoal to same component

 Once on roadmap, use Dijkstra
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Remarks on PRM

 sPRM is probabilistically complete and asymptotically optimal.

 PRM is probabilistically complete but NOT asymptotically optimal.

 Complexity for N samples: 𝑂(𝑁2).

 Practical complexity-reduction tricks:

 k-nearest neighbors: connect to the k nearest neighbors. Complexity 𝑂 𝑁𝑙𝑜𝑔𝑁 .

(Finding nearest neighbors takes 𝑙𝑜𝑔𝑁 time.)

 Bounded degree: connect at most 𝑘 nearest neighbors among those within radius

𝑟.

 Variable radius: change the connection radius 𝑟 as a function of 𝑁. How?
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Rapidly-exploring Random Trees

 Introduced by LaValle and Kuffner in 1998.

 Appropriate for single-query planning problems.

 Idea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

 At each step: sample one point from 𝑋𝑓𝑟𝑒𝑒, and try to connect it to the

closest vertex in the tree.

 Very effective in practice but presents “Voronoi bias”.
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Rapidly-exploring Random Trees

 The RRT algorithm is probabilistically complete.

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRT
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Rapidly-exploring Random Trees (RRTs)
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Voronoi bias

 Vertices of the RRT that are more “isolated” (e.g. in unexplored areas, or at

the boundary of the explored area) have the larger Voronoi regions – and

are more likely to be selected for extension.

Given 𝑛 sites in 𝑑 dimensions, the Voronoi diagram of the sites is a partition of ℝ𝑑

into regions, one region per site, such that all points in the interior of each region 

lie closer to that regions site than to any other site. 

Definition - Voronoi diagram:
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RRTs in action

 Great results for collision-avoidance of aerial robots.

 Integral component of several, higher-level algorithms (e.g. exploration
and inspection).
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 No characterization of the quality (e.g. “cost”) of the trajectories returned by

the algorithm.

Keep running the RRT even after the first solution has been obtained, for as long

as possible (given the real-time constraints), hoping to find a better path than

the one already available.

 No systematic method for imposing temporal/logical constraints, such as,

e.g. the rules of the road, complicated mission objectives, ethical/ deontic

code.
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RRTs don’t have the best behavior

 Let 𝑌𝑛
𝑅𝑅𝑇 be the cost of the best path in the RRT at the end of iteration 𝑛

 It is easy to show that 𝑌𝑛
𝑅𝑅𝑇 converges (to a random variable), i.e.:

lim
𝑛→∞

𝑌𝑛
𝑅𝑅𝑇 =𝑌∞

𝑅𝑅𝑇

 The random variable 𝑌∞
𝑅𝑅𝑇 is sampled from a distribution with zero mass at the

optimum:

If a set of sampled optimal paths has measure zero, the sampling distribution is

absolutely continuous with positive density in 𝑋𝑓𝑟𝑒𝑒 and 𝑑 ≥ 2, then the best path

in the RRT converges to a sub-optimal solution almost surely, i.e.:

Pr 𝑌∞
𝑅𝑅𝑇 > 𝑐∗ = 1

Theorem – Almost sure suboptimality of RRTs
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Some remarks on that negative result

 Intuition: RRT does not satisfy a necessary condition for asymptotic optimality,

i.e., that the root node has infinitely many subtrees that extend at least a

distance 𝜖 away from 𝑥𝑖𝑛𝑖𝑡.

 The RRT algorithm “traps” itself by disallowing new better paths to emerge.

 Heuristics such as

 Running the RRT multiple times

 Running multiple times concurrently

 Deleting and rebuilding parts of the tree etc.

Work better than the standard RRT, but cannot remove the sub-optimal behavior.

 How can we do better?
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Rapidly-exploring Random Graphs (RRGs)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤, min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ; 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑥𝑛𝑒𝑤 ;
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) then 𝐸 ← 𝐸 ∪ 𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ;
return 𝐺 = 𝑉, 𝐸 ;

RRG Algorithm

 At each iteration, the RRG tries to connect to the new sample all vertices in a ball

radius 𝑟𝑛 centered at it. (Or simply default to the nearest one if such a ball is empty).

 In general, the RRG builds graphs with cycles.
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Properties of RRGs

Since 𝑉𝑛
𝑅𝑅𝐺 = 𝑉𝑛

𝑅𝑅𝑇, for all 𝑛, it follows that RRG has the same completeness properties of

RRT, i.e.

Pr 𝑉𝑛
𝑅𝑅𝐺 ∩ 𝑋𝑔𝑜𝑎𝑙 = 0 = 𝑂(𝑒−𝑏𝑛)

Theorem – Probabilistic completeness

If the 𝑁𝑒𝑎𝑟 procedure returns all nodes in 𝑉 within a ball of volume

𝑉𝑜𝑙 = 𝛾
log 𝑛

𝑛
, 𝛾 > 2𝑑(1 + Τ1 𝑑),

Under some additional technical assumptions (e.g., on the sampling distribution, on the 𝜖
clearance of the optimal path, and on the continuity of the cost function), the best path

in the RRG converges to an optimal solution almost surely, i.e.:

Pr 𝑌∞
𝑅𝑅𝐺 = 𝑐∗ = 1

Theorem – Asymptotic optimality
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Computational complexity

 At each iteration, the RRG algorithm executes 𝑂 log𝑛 extra calls to

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒 when compared to the RRT.

 However, the complexity of the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 procedure is Ω(logn). Achieved if

using, e.g., a Balanced-Box Decomposition (BBD) Tree.

 In other words, the RRG algorithm has not much more computational

overhead over RRT, and ensures asymptotic optimality.

There exists a constant 𝛽 ∈ ℝ+ such that

lim
𝑖→∞

𝑠𝑢𝑝 𝐸
𝑂𝑃𝑆𝑖

𝑅𝑅𝐺

𝑂𝑃𝑆𝑖
𝑅𝑅𝑇 ≤ 𝛽

Theorem – Asymptotic (Relative) Complexity
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RRT*: A tree version of the RRG 

 RRT algorithm can account for nonholonomic dynamics and modeling errors.

 RRG requires connecting the nodes exactly, i.e., the 𝑆𝑡𝑒𝑒𝑟 procedure has to be exact.

Exact steering methods are not available for general dynamic systems.

• RRT* is a variant of RRG that essentially

“rewires” the tree as better paths are

discovered.

• After rewiring the cost has to be

propagated along the leaves.

• If steering errors occur, subtrees can be re-

computed.

• The RRT* algorithm inherits the asymptotic

optimality and rapid exploration properties

of the RRG and RRT.

RRT* Algorithm
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Rapidly-exploring Random Tree-star (RRT*)

 The RRT algorithm is probabilistically complete

 The probability of success goes to 1 exponentially fast, if the environment

satisfies certain “good visibility” conditions.

𝑉 ← 𝑥𝑖𝑛𝑖𝑡 ; 𝐸 ← 0;
for i=1,…,N do:

𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒;
𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺 = 𝑉, 𝐸 , 𝑥𝑟𝑎𝑛𝑑 ;
𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑 ;
if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) then:

𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟 𝐺 = 𝑉, 𝐸 , 𝑥𝑛𝑒𝑤 , min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉

𝑐𝑎𝑟𝑑 𝑉

1/𝑑
, 𝜂} ;

𝑉 ← 𝑉 ∪ 𝑥𝑛𝑒𝑤 ;
𝑥𝑚𝑖𝑛 ← 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡; 𝑐min ← 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 + 𝑐(𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤 )
foreach 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do:

if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 ^ 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝑐 𝐿𝑖𝑛𝑒 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤 < 𝐶𝑜𝑠𝑡 𝑥𝑛𝑒𝑎𝑟 then:

𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑟𝑒𝑛𝑡 𝑥𝑛𝑒𝑎𝑟 ;

𝐸 ← 𝐸\ 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑥𝑛𝑒𝑎𝑟 ∪ (𝑥𝑛𝑒𝑤, 𝑥𝑛𝑒𝑎𝑟) ;

return 𝐺 = 𝑉, 𝐸 ;

RRT* Algorithm
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RRT* in Action 
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ARL 2016 Planning Ensemble for Mapping

 Classification:

 Prior environmental knowledge?

 Active perception and belief-space planning?

 Possible human co-working?

 Applicable to “any” robot configuration?

 Robot evaluation:

 Multi-rotor UAV systems

 Fixed-wing UAV systems

 …not limited
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Assumed Robot Configuration
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Example Specific Robot Configuration
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Proposed Planning Ensemble

 Classification:

 NO Prior environmental knowledge

 Active perception and belief-space planning?

 Possible human co-working?

 Applicable to “any” robot configuration?

 Robot evaluation:

 Multi-rotor UAV systems

 Fixed-wing UAV systems

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer

Focus of this 

presentation



The Exploration path planning problem

The exploration path planning problem consists in exploring a previously unknown
bounded 3D space 𝑉 ⊂ ℝ3. This is to determine which parts of the initially unmapped
space 𝑉𝑢𝑛𝑚 = 𝑉 are free 𝑉𝑓𝑟𝑒𝑒 ⊂ 𝑉 or occupied 𝑉𝑜𝑐𝑐 ⊂ 𝑉. The operation is subject to

vehicle kinematic and dynamic constraints, localization uncertainty and limitations
of the employed sensor system with which the space is explored.

 As for most sensors the perception stops at surfaces, hollow spaces or narrow
pockets can sometimes not be explored with a given setup. This residual space is
denoted as 𝑉𝑟𝑒𝑠. The problem is considered to be fully solved when 𝑉𝑓𝑟𝑒𝑒 ∪ 𝑉𝑜𝑐𝑐 =

𝑉\𝑉𝑟𝑒𝑠.

 Due to the nature of the problem, a suitable path has to be computed online
and in real-time, as free space to navigate is not known prior to its exploration.

Problem Definition: Volumetric Exploration
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Receding Horizon Next-Best-View Exploration

 Goal: Fast and complete exploration of

unknown environments.

 Define sequences of viewpoints based

on vertices sampled using random trees.

 Select the path with the best sequence

of best views.

 Execute only the first step of this best

exploration path.

 Update the map after each iteration.

 Repeat the whole process in a receding

horizon fashion.
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Exploration Planning (nbvplanner)
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Exploration Planning (nbvplanner)

 Environment representation: Occupancy

Map dividing space 𝑉 into 𝑚 ∈ 𝑀 cubical

volumes (voxels) that can be marked

either as free, occupied or unmapped.

 Use of the octomap representation to

enable computationally efficient access

and search.

 Paths are planned only within the free
space 𝑉𝑓𝑟𝑒𝑒 and collision free point-to-

point navigation is inherently supported.

 At each viewpoint/configuration of the

environment 𝜉 , the amount of space

that is visible is computed as 𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝑀, 𝜉)

The Receding Horizon Next-Best-View

Exploration Planner relies on the real-time

update of the 3D map of the environment.
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Exploration Planning (nbvplanner)

 Tree-based exploration: At every
iteration, the nbvplanner spans a

random tree of finite depth. Each vertex

of the tree is annotated regarding the

collected Information Gain – a metric of

how much new space is going to be

explored.

 Within the sampled tree, evaluation

regarding the path that overall leads to

the highest information gain is

conducted. This corresponds to the best

path for the given iteration. It is a
sequence of next-best-views as sampled

based on the vertices of the spanned

random tree.
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Exploration Planning (nbvplanner)

 Receding Horizon: For the extracted best

path of viewpoints, only the first

viewpoint is actually executed.

 The system moves to the first viewpoint of

the path of best viewpoints.

 The map is subsequently updated.

 Subsequently, the whole process is

repeated within the next iteration. This

gives rise to a receding horizon

operation.
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nbvplanner Iterative Step

Exploration Planning (nbvplanner) Algorithm

 𝜉0 ←current vehicle configuration

 Initialize 𝑻 with 𝜉0 and, unless first planner call, also previous best branch

 𝑔𝑏𝑒𝑠𝑡 ← 0 // Set best gain to zero

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛0 𝜉0 // Set best node to root

 𝑁𝑇 ←Number of nodes in 𝑻

 while 𝑁𝑇 < 𝑁𝑚𝑎𝑥 or 𝑔𝑏𝑒𝑠𝑡 == 0 do

 Incrementally build 𝑻 by adding 𝑛𝑛𝑒𝑤 𝜉𝑛𝑒𝑤

 𝑁𝑇 ← 𝑁𝑇 + 1

 if 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤 > 𝑔𝑏𝑒𝑠𝑡 then

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛𝑛𝑒𝑤

 𝑔𝑏𝑒𝑠𝑡 ← 𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤

 if 𝑁𝑇 > 𝑁𝑇𝑂𝑇 then

 Terminate exploration

 σ ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝑩𝒆𝒔𝒕𝑷𝒂𝒕𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕 𝑛𝑏𝑒𝑠𝑡

 Delete 𝑻

 return σ
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Exploration Planning (nbvplanner) Remarks

 Inherently Collision-free: As all paths of
nbvplanner are selected along

branches within RRT-based spanned

trees, all paths are inherently collision-

free.

 Computational Cost: nbvplanner has a

thin structure and most of the

computational cost is related with

collision-checking functionalities. The

formula that expresses the complexity of

the algorithm takes the form:
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nbvplanner Evaluation (Simulation)
 Simulation-based evaluation:

Explore a bridge.

 Comparison with Frontier-

based exploration.
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Extension to Surface Inspection

Given a surface 𝑆, find a collision free path σ starting at an initial configuration
𝜉𝑖𝑛𝑖𝑡 ∈ Ξ that leads to the inspection of the part S𝑖𝑛𝑠𝑝, when being executed,

such that there does not exist any collision free configuration from which any
piece of 𝑆\𝑆𝑖𝑛𝑠𝑝 could be inspected. Thus, 𝑆𝑖𝑛𝑠𝑝 = 𝑆\𝑆𝑟𝑒𝑠.

 Let ഥ𝑉𝑠 ⊆ Ξ be the set of all configurations from which the surface piece 𝑠 ⊆
𝑆 can be inspected. Then the residual surface is given as 𝑆𝑟𝑒𝑠 =∪𝑠∈𝑆 (𝑠|ഥ𝑉𝑠 = 0)

Problem Definition: Surface Inspection
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nbvplanner Evaluation (Simulation)
 Extension to surface inspection: The robot identifies trajectories that locally ensure

maximum information gain regarding surface coverage.
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NBVP Evaluation (Experiment)

Kostas Alexis, Robotics Short Seminars, Feb 11 2016



nbvplanner Evaluation (Experiment)
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Proposed Planning Ensemble

 Classification:

 NO Prior environmental knowledge

 Active perception and belief-space planning

 Possible human co-working?

 Applicable to “any” robot configuration?

 Robot evaluation:

 Multi-rotor UAV systems

 Fixed-wing UAV systems
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Uncertainty-aware Exploration & Mapping

The overall problem is that of exploring an unknown bounded 3D volume 𝑉𝐸 ⊂ ℝ3,
while aiming to minimize the localization and mapping uncertainty as evaluated
through a metric over the robot pose and landmarks probabilistic belief.

Problem Definition

Given a bounded volume 𝑉𝐸, find a collision free path 𝜎 starting at an initial
configuration 𝜉𝑖𝑛𝑖𝑡 ∈ Ξthat leads to identifying the free and occupied parts 𝑉𝑓𝑟𝑒𝑒

𝐸

and 𝑉𝑜𝑐𝑐
𝐸 when being executed, such that there does not exist any collision free

configuration from which any piece of 𝑉𝐸{𝑉𝑓𝑟𝑒𝑒
𝐸 , 𝑉𝑜𝑐𝑐

𝐸 } could be perceived.

Problem 1: Volumetric Exploration

Given a 𝑉𝑀 ⊂ 𝑉𝐸, find a collision free path 𝜎𝑀 starting at an initial configuration
𝜉0 ∈ Ξ and ending in a configuration 𝜉𝑓𝑖𝑛𝑎𝑙 ∈ Ξ that aims to improve the robot’s
localization and mapping confidence by following paths of optimized
expected robot pose and tracked landmarks covariance.

Problem 2: Belief Uncertainty-aware planningCombined Problem
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Recall Robot Configuration
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Uncertainty-aware Exploration & Mapping
Receding Horizon Exploration 

and Mapping Planner 

(rhemplanner)

Two-levels 

Path Planning paradigm
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Broader topic: Planning under 

uncertainty



rhemplanner - Exploration Step
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rhemplanner - Exploration Step

 Exploration Gain with probabilistic reobservation

 Aiming to maximize newly explored space and reobserve space with decreased confidence

of being mapped as occupied.
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rhemplanner - Uncertainty-aware Step
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rhemplanner - Uncertainty-aware Step

 The robot performs onboard localization and mapping

 For the case of our experiments it performs visual-inertial localization

 Can be generalized to different cases given a filter-based approach

 The assumptions are:

 Pose, features and their uncertainties are estimated

 Dense, volumetric mapping takes place

 To get an estimate about its pose, it relies on tracking landmarks from its sensor

systems. The system performs odometry in an EKF-fashion and the overall state of the

filter is:
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rhemplanner - Uncertainty-aware Step

 Belief Propagation: in order to identify the paths that minimize the robot uncertainty, a

mechanism to propagate the robot belief about its pose and the tracked features has

to be established.
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Equations adopted 

from Bloesch et al. 

“Robust Visual Inertial 

Odometry Using a 

Direct EKF-Based 

Approach”



rhemplanner - Uncertainty-aware Step

Propagate the robot’s 

belief about its pose 

and the tracked 

landmarks: 

Prediction step

State Propagation Step

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



rhemplanner - Uncertainty-aware Step

 Identify which viewpoints are

expected to be visible given the

next pose and the known map

 Compute the propagated belief

covariance matrix

Propagate the robot’s 

belief about its pose 

and the tracked 

landmarks: 

Update step

Filter Update Step

By stacking the above terms for all visible landmarks, standard EKF update

step is directly performed to derive the new estimate of the robot belief for

its state and the tracked features.
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rhemplanner - Uncertainty-aware Step

Propagate the robot’s 

belief about its pose 

and the tracked 

landmarks: 

Update step

Filter Update Step

By stacking the above terms for all visible landmarks, standard EKF update

step is directly performed to derive the new estimate of the robot belief for

its state and the tracked features.
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rhemplanner - Uncertainty-aware Step

 Uncertainty optimization: to be able to derive which path minimizes the robot

uncertainty about its pose and the tracked landmarks, a metric of how small the

covariance ellipsoid is has to be defined.

 What metric?
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rhemplanner - Uncertainty-aware Step

 Uncertainty optimization: to be able to derive which path minimizes the robot

uncertainty about its pose and the tracked landmarks, a metric of how small the

covariance ellipsoid is has to be defined.

 D-optimality metric:

Broadly: maximize the determinant of the information matrix X'X of 

the design. This criterion results in maximizing the differential Shannon 

information content of the parameter estimates.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer



First Planning Step

rhemplanner Algorithm
 𝜉0 ←current vehicle configuration

 Initialize 𝑻𝐸 with 𝜉0

 𝑔𝑏𝑒𝑠𝑡
𝐸 ← 0 // Set best exploration gain to zero

 𝑛𝑏𝑒𝑠𝑡 ← 𝑛0 𝜉0 // Set best best exploration node to root

 𝑁𝑇
𝐸 ←Number of nodes in 𝑻𝐸

 While 𝑁𝑇
𝐸 < 𝑁𝑚𝑎𝑥

𝐸 or 𝑔𝑏𝑒𝑠𝑡
𝐸 == 0 do

 Incrementally build 𝑻𝐸 by adding 𝑛𝑛𝑒𝑤
𝐸 𝜉𝑛𝑒𝑤

𝐸

 𝑁𝑇
𝐸 ← 𝑁𝑇

𝐸 + 1

 if Exploratio𝑛𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤
𝐸 > 𝑔𝑏𝑒𝑠𝑡

𝐸 then

 𝑛𝑛𝑒𝑤
𝐸 ← 𝑛𝑛𝑒𝑤

𝐸

 𝑔𝑏𝑒𝑠𝑡
𝐸 ← Exploratio𝑛𝐺𝑎𝑖𝑛 𝑛𝑛𝑒𝑤

𝐸

 if 𝑁𝑇
𝐸 > 𝑁𝑇𝑂𝑇

𝐸 then

 Terminate planning

 𝜎𝑅𝐻
𝐸 , 𝑛𝑅𝐻

𝐸 , 𝜉𝑅𝐻 ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝑩𝒆𝒔𝒕𝑷𝒂𝒕𝒉𝑺𝒆𝒈𝒎𝒆𝒏𝒕 𝑛𝑏𝑒𝑠𝑡

 𝑆𝜉𝑅𝐻 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑡(𝜉𝑅𝐻)
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rhemplanner Algorithm
 Propagate robot belief along 𝜎𝑅𝐻

𝐸

 𝑎 ← 1 // number of admissible paths

 𝑔𝑎
𝑀 ← 𝐵𝑒𝑙𝑖𝑒𝑓𝐺𝑎𝑖𝑛(𝜎𝑅𝐻

𝐸 )

 𝑔𝑏𝑒𝑠𝑡
𝑀 ← 𝑔𝑎

𝑀 // straight path belief gain

 𝜎𝑏𝑒𝑠𝑡
𝑀 ← 𝜎𝑅𝐻

𝑀

 while 𝑁𝑇
M < 𝑁𝑚𝑎𝑥

𝑀 or 𝑉 𝑇𝑀 ∩= ∅𝑆𝜉𝑅𝐻do

 Incrementally build 𝑻𝑀 by adding 𝑛𝑛𝑒𝑤
𝑀 𝜉𝑛𝑒𝑤

 Propagate robot belief from current to planned vertex

 if 𝜉𝑛𝑒𝑤 ∈ 𝑆𝜉𝑅𝐻then

 Add new vertex 𝑛𝑛𝑒𝑤
𝑀 at 𝜉𝑅𝐻 and connect

 𝑎 ← 𝑎 + 1

 𝜎𝛼
𝑀 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐵𝑟𝑎𝑛𝑐ℎ(𝑛𝑛𝑒𝑤

𝑀 )

 𝑔𝛼
𝑀 ← 𝐵𝑒𝑙𝑖𝑒𝑓𝐺𝑎𝑖𝑛(𝜎𝑎

𝑀)

 if 𝑔𝛼
𝑀 < 𝑔𝑏𝑒𝑠𝑡

𝑀 then

 𝜎𝑀 ← 𝜎𝑎
𝑀

 𝑔𝑏𝑒𝑠𝑡
𝑀 ← 𝑔𝑎

𝑀

 return 𝜎𝑀

Second Planning Step
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rhemplanner Complexity Analysis
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rhemplanner Evaluation (Experimental)
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Uncertainty-aware Exploration & Mapping
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rhemplanner Evaluation (Experimental)
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rhemplanner Evaluation (Experimental)
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Kostas Alexis

Primer Series – Integrated Task and Motion Planning



Move beyond “reach the goal” paradigm

 Mission: “Do the following in any order and

always avoid the black demo area:

 Water the plant.

 Clean the blackboard.

 Turn off the coffee maker.

 Pick up vacuum cleaner from the supply room,

then vacuum the orange room and dust its

table”
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Move beyond “reach the goal” paradigm

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer

How can I plan to 

execute a complex 

mission



Move beyond “reach the goal” paradigm
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Reason over tasks

Reason over 

dynamics



Move beyond “reach the goal” paradigm
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Move beyond “reach the goal” paradigm

 Ability to plan for general complex robotic

systems using sampling-based motion

planners.
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Solution employing Linear Temporal Logic
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LTL: Linear Temporal Logic

DFA: Deterministic Finite Automaton
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Linear Temporal Logic (LTL)

 Linear Temporal Logic (LTL) or linear-time temporal logic is a modal temporal logic with

modalities referring to time.

 In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be

true, a condition will be true until another fact becomes true, etc.

 LTL was first proposed for the formal verification of computer programs by Amir Pnueli in

1977.

 LTL is Built from:

 A set 𝑆 of proposition variables: 𝑆 = 𝑝0, 𝑝1, … , 𝑝𝑁

 Boolean connectivities: And (&), Or (|), Not (¬)

 Temporal connectivities: Next (X), Eventually (F), Always (G), Until (U)

 Traditionally used to successfully check properties of hardware and software.
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Syntactically Co-Safe LTL 

 Co-safe LTL

 Examples:
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until

next eventually

Co-safe LTL – reduced subset of full LTL



Syntactically Co-Safe LTL 

 Co-safe LTL

 Examples:

 DFA: from a co-safe LTL 𝜑, a Deterministic Finite Automaton Α𝜑 can be constructed.
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next

until

eventually



Deterministic Finite Automate (DFA)

 In the theory of computation, a Deterministic Finite Automaton (DFA)—also known as a

deterministic finite accepter (DFA) and a deterministic finite state machine (DFSM)—is a

finite-state machine that accepts and rejects strings of symbols and only produces a unique

computation (or run) of the automaton for each input string.

 Upon reading a symbol, a DFA jumps deterministically from one state to another by following

the transition arrow/transition prescribed.

 A DFA is defined as an abstract mathematical concept, but is often implemented in

hardware and software for solving various specific problems. For example, a DFA can model

software that decides whether or not online user input such as email addresses are valid.
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Planning from LTL specifications

 Co-safe LTL

 Examples:

 DFA: from a co-safe LTL 𝜑, a Deterministic Finite Automaton Α𝜑 can be constructed.
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Planning from LTL specifications

 In the future visit p1, and then visit

region p2 or p3.
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φ = F (p1 AND F (p2 OR p3)) 

LTL

Automata

Conversion

Solution: Plan, use

Automation Aφ that

encodes formula φ

as a monitor



Sampling-based planning alone is slow
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Sampling-based planning alone is slow
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Slow and not recommended



Sampling-based planning alone is slow
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SyCLoP – A synergistic framework
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SyCLoP: Synergistic combination of layers of planning
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Sampling-based planning alone is slow

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer

Based on work from M. Moll, Rice University, Houston, TX



Sampling-based planning alone is slow

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer

Based on work from M. Moll, Rice University, Houston, TX



Synergistic framework
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A guiding decomposition is needed
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Moving beyond “reach the goal” paradigm

 Mission:

 “Do the following in any order and always avoid

the black demo area:

 Water the plant

 Clean the blackboard

 Turn off the coffee maker

 Pick up vacuum cleaner from the supply

room, then vacuum the orange room and

dust its table.”
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What we gain this way

 Safe LTL task planning

 Hybrid systems encode behaviors and

planning tasks decomposition

 Changes in the environment are handled
more easily

 Integration of more complex cases such

as manipulation and planning under

uncertainty.

Kostas Alexis, Autonomous Robots Lab, Sampling-based Path Planning Primer

Based on work from M. Moll, Rice University, Houston, TX



Code Examples and Tasks

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/matlab/path-planning/rrt

 https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-

planning/structural-inspection

 https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-

planning/autonomous-exploration

 https://github.com/unr-

arl/DubinsAirplane/tree/52ce13e4a6dea9005da702095e6b0acbb175e008

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/python/DubinsCar

 https://github.com/unr-

arl/autonomous_mobile_robot_design_course/tree/master/python/HAV_BVS
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Find out more

 Further direct resources on our own work

 http://www.autonomousrobotslab.com/autonomous-navigation-and-exploration.html - our papers

 http://www.autonomousrobotslab.com/holonomic-vehicle-bvs.html

 http://www.autonomousrobotslab.com/dubins-airplane.html

 http://www.autonomousrobotslab.com/collision-free-navigation.html

 http://www.autonomousrobotslab.com/structural-inspection-path-planning.html

 Good resources to Study

 http://biorobotics.ri.cmu.edu/book/

 http://msl.cs.uiuc.edu/planning/

 Resources for algorithms

 http://ompl.kavrakilab.org/

 http://moveit.ros.org/

 https://github.com/ros-planning/3d_navigation

 http://planning.cs.uiuc.edu/

 http://plannerarena.org/

 https://spot.lrde.epita.fr/ and http://www.cs.rice.edu/~mmoll/icaps2016/ltl2a.h.html

 https://github.com/ethz-asl

 https://github.com/unr-arl
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Appendix

 Dijkstra’s Algorithm

 How do we go from UNR to Crystal Bay or vice

versa?

 Single-source shortest path problem

 Weighted graph G = [E,V]

 Find path from source vertex s to vertices v

 Works with both directed and undirected graphs
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dist[s] ← 0

forall v ∈ V-{s}

do dist[v] ← inf

S ← empty

Q ← ∅
while Q ! ← ∅

S ← S U u

forall v ∈ neighbors[u]
do if dist[v] > dist[u] + w(u,v)

then d[v] ← d[u] + w(u,v)



Kripke Structure

 A Kripke structure is a variation of the transition system, originally proposed by Saul

Kripke, used in model checking to represent the behavior of a system. It is basically a

graph whose nodes represent the reachable states of the system and whose edges

represent state transitions.
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Linear Temporal Logic (LTL)

 Idea:

 LTL as a temporal logic to express properties of paths in Kripke structures.

 Syntax:

 LTL syntax contains rules for temporal operators.

 Semantics:

 Interprets the meaning of LTL expressions.

 Kripke structures are used to define semantics.
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Appendix: Linear Temporal Logic
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Linear Temporal Logic (LTL)

 Syntax of LTL (1/2):

 Linear Temporal Logic reuses concepts from first order logic

 Atomic propositions (labels of states in Kripke structures)

 Boolean operators

 Temporal operators

 Evaluates ordering of states in computation (path)

 Temporal operators

 X (next)

 Requires that a property holds in the next state of the path

 F (eventually)

 Is used to assert that a property will hold at some state in the path

 G (always, globally)

 Specifies that a property holds at every state on the path

 U (a Until b)

 There is a state on the path where b holds, and at every state before that, a holds
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Linear Temporal Logic (LTL)

 Syntax of LTL (2/2):

 The set of propositional logic formulae over a set of atomic propositions (AP) is defined by the

following rules:

 TRUE is a formula

 Any atomic proposition is a formula

 If f and g are formulae, then so are:

 ¬f, f v g, and f ^ g

 x f

 F f

 Gf , and

 f U g
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Linear Temporal Logic (LTL)

 Semantics of LTL: defined based on paths in Kripke structures.

 Kripke structure 𝑀 = (𝑆, 𝑆0, 𝑅, 𝐿) with set 𝑆 of states, a transition relation 𝑅, and a labeling

function 𝐿, assigning sets of atomic propositions to states.

 A path in M is an infinite sequence of states 𝜋 = 𝑠0, 𝑠1, … s.t. (𝑠𝑖 , 𝑠𝑖+1) ∈ 𝑅 for all 𝑖 ≥ 0

 𝜋𝑖 is the suffix of 𝜋 starting at 𝑠𝑖
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Linear Temporal Logic (LTL)

 If f is a formula, M, s |= f means: in state s of the Kripke structure M holds formula 𝑓

 Each formula is a path formula. Path 𝜋 satisfies 𝑓, IF its first state satisfies it.

 𝑀,𝜋 | = 𝑓֞𝑀, 𝑠0| = 𝑓 where 𝜋 = 𝑠0, 𝑠1
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Linear Temporal Logic (LTL)

 Example:

 π = {a}, {a,b}, {a,b,c}, {a,b,c,d}, {a,b,c,d,t}, {a,b,c,d,t,t}…
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Thank you! 
Please ask your question!


