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Autonomous Robot Challenges

How to explore
and inspect
structures and

environmentse




Motivation

Autonomous Exploration and Inspection =
of even unknown or partially known
environments. '

Autonomous complete coverage 3D
structural path planning

Enable real-time dense reconstruction of =
infrastructure

Consistent mapping and re-mapping of
infrastructure to derive models and
detect change

Long-endurance mission by exploiting the
ground robot battery capacity

Aerial robots that autonomously inspect
our infrastructure or fields, detect
changes and risks.
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Real-lite i1s 3D, Complex, Possibly unknown

Unknown Model — execute
Autonomous Exploration

Known Model to Compute Global
Inspection Path
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Real-life 1s 3D, Complex Possibly unknown

Unknown Model - execute
Autonomous Exploration

Known Model to Compute Global
Inspection Path
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What Is exploration?

order to determine the conditions and §
characteristics of the environment SE=SrFee
(typically: to map it). e
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Exploration is different than Coverage

= Coverage problems assume that the ;
map is known and the objective is to §
optimally cover and/or possibly identify
targets of interest in it.

Current methods

= Exploration problems deal with how to FE=&
map a previously unknown world! g
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Applications of Autonomous Exploration

Infrastructure monitoring and
maintenance

Rapid support of search and rescue
operations

Surveillance and reconnaissance

Operation in any environment not
suitable for human operators
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Receding Horizon Next-Best-View Exploration

= Rapid exploration of unknown
environments.

» Define sequences of viewpoints based
on vertices sampled using random trees.

= Select the path with the best sequence
of best views.

= Execute only the first step of this best
exploration path.

» Repeat the whole process in a receding
horizon fashion.




The Exploration path planning problem

Problem Definition

The exploration path planning problem consists in exploring a bounded 3D
space V c R3. This is to determine which parts of the initially unmapped space
Vinm =V are free Vg, €V or occupied V,.. c V. The operation is subject to
vehicle kinematic and dynamic constraints, localization uncertainty and
limitations of the employed sensor system with which the space is explored.

As for most sensors the perception stops at surfaces, hollow spaces or narrow
pockets can sometimes not be explored with a given setup. This residual
space is denoted as V... The problem is considered to be fully solved when
Vfree U Voce = V\Vies-

Due to the nature of the problem, a suitable path has to be computed
online and in real-time, as free space to navigate is not known prior to its
exploration.

§
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Exploration Planning (nbvplanner)
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Gain(ny,) = Gain(ny_,) + Visible(M, &,)e (71
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Exploration Planning (nbvplanner)

= Environment representation: Occupancy Map | Path planner |— Robot
Map dividing space V into m € M cubical
volumes (voxels) that can be marked T
either as free, occupied or unmapped. Localization
= Array of voxels is saved in an ociree Sensor

stfructure  to enable computationally
efficient access and search.

The Receding Horizon Next-Best-View
= Paths are planned only within the free | Exploration Planner relies on the real-time
space Vi and collision-free point-fo- | ypdate of the 3D map of the environment.
point navigation is inherently supported.

= At each viewpoint/configuration of the
environment &, the amount of space
that is visible is computed as Visible(M, &)
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Exploration Planning (nbvplanner)

= Tree-based exploration: At every
iteration, RH-NBVP spans a random free
of finite depth. Each vertex of the free is
annotated regarding the collected
Information Gain — a metric of how much
new space is going to be explored.

Gain(ny) = Gain(ng_1) + Visible(M, &, )e (k-1

» Within the sampled tree, evaluation
regarding the path that overall leads to
the  highest informafion gain is
conducted. This corresponds to the best
path for the given iteration. It is @
sequence of next-best-views as sampled
based on the vertices of the spanned
random tree.

OOOOOOOOOO



Exploration Planning (nbvplanner)

= Receding Horizon: For the extracted best
path of viewpoints, only the first
viewpoint is actually executed.

= The system moves to the first viewpoint of
the path of best viewpoints.

= Subsequently, the whole process is
repeated within the next iteration. This
gives rise to a receding horizon
operation.
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nbvplanner Algorithm

NBVP Iterative Step
» &, «current vehicle configuration
» Inifialize T with &, and, unless first planner call, also previous best branch
*  Gpest < 0 // Set best gain to zero
Y Npese < N(&y) // Set best node to root
*  Np «Number of nodesinT

»  while Ny < N5 OF gpest == 0 dO
» Incrementally build T by adding n,ew (Eew)
* Ny« Nr+1
v if Gain(nyey) > Gpest then

” Npest < Nnew
¥ Gpest « Gain(nyey,)
» if Np > Npor then

» Terminate exploration
» o0 « ExtractBestPathSegment(n,,g;)

» DeleteT

» returno
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nbvplanner Remarks

= |nherently Collision-free: As all paths of
NBVP are selected along branches
within RRT-based spanned trees, all paths
are inherently collision-free.

= Compuvutational Cost: NBVP has a thin
structure and most of the computational
cost is related with collision-checking
functionalities. The formula that expresses
the complexity of the algorithm takes the
form:

O(Nrlog(Nr) + Nr/r’log(V/r®) + Nr(dipax™ /r)" log(V /%))
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nbvplanner Evaluation (Simu

Receding Horizon Next-Best-View Planner

ation)

1.5

Volume [ms]

o
o

o m mm et Em me wm m ome e =

-;- ----- Occupied
= = =Free
— | nmapped

10 20 3.0 40
by in]
Kostas Alexis, Autonomous Robots Lab, University of Nevada, Reno

Frontier-Based Planner

Volume [ma]

----- Occupied
15t - - ... | == =Frae |
Unmapped | #
R
-
1 .
0.5
i
-~
-
’ -
0 PR NN NN NN NI R _an S _ RN BN 5
0 500 1000 1500

t_ [min i

ot [MIN] I
AUTONOMOUS
ROBOTS
LAB



Nbvplanner Evaluation (Experiment)

ttot=132.2s ttot=184.6s

ttot=253.4s§.
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Multi-Agent nbvplanner Simulation
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Uncertainty-aware Exploration & Mapping

Problem Definition

The overall problem is that of exploring a bounded 3D volume VE c R3, while
aiming to minimize the localization and mapping uncertainty as evaluated
through a metric over the robot pose and landmarks probabilistic belief.

Problem 1: Volumetric Exploration

Given a bounded volume VE, find a collision free path o starting at an initial
configuration &;,,;; € Ethat leads to identifying the free and occupied parts Vf’iee
and V.E. when being executed, such that there does not exist any collision free
configuration from which any piece of VE{V;.,,. V5.} could be perceived.

Problem 2: Belief Uncertainty-aware planning

Given a V™ c VE, find a collision free path ¢ starting at an initial configuration
o € E and ending in a configuration &¢;,4 € E that aims fo improve the robot’s

localization and mapping confidence by following paths of optimized
expected robot pose and tracked landmarks covariance.

§
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Uncertainty-aware Exploration & Mapping

Receding Horizon
Exploration and

Mapping Planner
(RHEM)
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ration Planning
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RHEM - Exploration Planning

= Exploration Gain
ExplorationGain(nkE) — ExplorationGain(nkE_l) +
VisibleVolume(M, &) exp(—Ae(0,_q 1)) +
ReobservationGain(M, P, &) eXp(_)\C(Uf_l,k )

= Aiming to maximize newly explored space and reobserve space with decreased confidence
of being mapped as occupied.
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RHEM - Uncertainty-aware planning
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RHEM - Uncertainty-aware planning

= The robot performs visual-inertial localization.

» To get an estimate about its pose, it relies on tracking features from its camera

systems. The system performs odometry in an EKF-fashion and the overall state of the
filter is:

pose, L,
P e
x=|Tq vbsb,cz|py, - pypo - pJ
N ~ -~ —~
robot states, [ features states, [ ¢



RHEM - Uncertainty-aware planning

= Belief Propagation: in order to identify the paths that
minimize the robot uncertainty, a mechanism to
propagate the robot belief about its pose and the
tracked features has to be established.

State Propagation Step - Equations (3)

r=-—-w r+uv+w,

=0 v+f+q (g

a=—a(w)

bp =Wy

bw‘:wbur

& =w,

Z =W

. NT . 0 1 T vy

iy = NT Gy )oy = || N ) 2w

. T a
pj = —p; Oy/d (pj) +wp

?:f—b‘f—Wf
O=&—by—we
vy =z(v+wie
oy = z(w)

Filter Update Step - Equations (4)

yi =bj(m(i,;)) +n;

R dmw
H; = A,f(‘JT(M_,))E(M_;)
By stacking the above terms for all visible features, standard EKF
update step is directly performed to derive the new estimate of the

robot belief for its state and the tracked features.

Notation

* — skew symmetric matrix of a vector, f — proper acceleration
measurement, w — rotational rate measurement, f — biased
corrected acceleration, & — bias corrected rotational rate, N7 () —
projection of a 3D vector onto the 2D tangent space around the
bearing vector, g — gravity vector, w, — white Gaussian noise
processes, m(pt) — pixel coordinates of a feature, b (mw(f;)) — a
2D linear constraint for the j* feature which is predicted to be
visible in the current frame with bearing vector ,&j
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R

EM - Uncertainty-aware planning

State Propagation Step - Equations (3)

r=—w-r+v+w,

b =-w*v+f+q (g

q=—q(w)
by =wy
bw — Whau

C — W,

Z — W-

frj =N (pj)@y — [ ’ 1] NT () =~ + Wy

-10 7d(py) e

pj = —M}T@v/d'(m) + wp,j

f‘:fh—bf—Wf
w=w—b, —w,
vy = z(v + w”c)
oy = z(w)
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RHEM - Uncertainty-aware planning

Filter Update Step - Equations (4)

yi = bj(m(p;)) + nj
R dm
H; = Aj(ﬂ-(“’j))@(nu'j)
By stacking the above terms for all visible features, standard EKF
update step is directly performed to derive the new estimate of the

robot belief for its state and the tracked features.

= |dentify which viewpoints are _Xj u
expected to be visible given | Y, | = R(‘/;/ KI_l 11y + Tgf
the next pose and the known Zj Pj 1

Map

=» Compute the propagated L .
belief covariance matrix Et,l — (I — Kt Ht) Et,l

§
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RHEM - Uncertainty-aware planning

= Uncertainty optimization: do be able to derive which path minimizes the robot
uncertainty about its pose and the tracked landmarks, a metric of how small the

covariance ellipsoid is has to be defined.

% 4 »

&

é
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RHEM - Uncertainty-aware planning

= Uncertainty optimization: do be able to derive which path minimizes the robot
uncertainty about its pose and the tracked landmarks, a metric of how small the
covariance ellipsoid is has to be defined.

Doyt (0") = exp(log([det(Zy, s (o)) 7))

BeliefGain(aé\é/[) = Dopt(o-c])\a/[)
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RHEM Algorithm

» &, «current vehicle configuration
» Initialize TE with &,
> gh, <0 // Set best exploration gain to zero
Y Npest < No(&p) // Set best best exploration node to root
»  NE «Number of nodes in T®
> While NE < NE, orgZ,., == 0do
» Incrementally build T by adding n£,,, (¢E,,)
» NE<NE+1
» if ExplorationGain(n£,,) > gf.., then
* Niew < Mnew
> gf.s < ExplorationGain(nk,,,)
» If Nf > NE,; then
» Terminate planning
> ofy,nE, &y « ExtractBestPathSegment(n,,g;)

*  Sgy < LocalSet(Sgy) |
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RHEM Algorithm

»

Second Planning Step

Propagate robot belief along af

a<1

// number of admissible paths

g¥ « BeliefGain(cty)

Gbest < 94 // straight path belief gain

M M
Opest < ORH

While N' < N}, or V(T™) n= @S¢, do

» Incrementally build T by adding n%,,(&,.ew)

»  Propagate robot belief from current to planned vertex

* I &pew € Sgp, then

»

»

»

Return oM

Add new vertex nl,, at &y and connect
a<—a+1
oY « ExtractBranch(nl,,)
g¥ « BeliefGain(al!)
Ifg¥ < git., then
v oM e gh

M M
’ Ibest < YGa
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RHEM Complexity

RRT construction Collision checking

O(N7P log(N2)), S — E,M | O(NZ/r’log(V*/r?)), S — E, M

15 planning level gain computation
O (N (B35 /r)  log (V'™ /17))

2"4 planning level gain computation

O(Np” (dyi /r)  log(VE /ro)ly + na (127 +13) + nar(Ip + Lg))
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RHEM Evaluation (Experimental)

Path Planning

Position Control

q

r

Attitude Control

200Hz S

§ |20Hz
| Intel i7 %
X|M
VI Odometry
20Hz X
2xCamera/IMU gy,

” P|xhawk

ion

High-Level Processing
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Uncertainty-aware Receding Horizon
Exploration and Mapping using Aerial Robots

Christos Papachnstos Shehryar Khattak, Kostas Alexis

Initialization

AUTONOMOUS
L ROBOTS
“LAB




RHEM Evaluation (Experimental)

Initialization

Exploration Step i &

| Belief Propaga’rion_;,, BN

[5]
l"‘ “"‘F‘-'"‘ = — =] ——!=-1

)
e Landmark | current pose

> - c—
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RHEM Evoluo’non (Experimental)

=

| Ofﬂme HD-camera reconsiruchon Online reconstruction from robot |

o
av]
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Real-lite i1s 3D, Complex, Possibly unknown

— | \k\\ \

Unknown Model — execute
Autonomous Exploration

Known Model to Compute Global
Inspection Path
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The inspection path planning problem

= Consider a dynamical conftrol system defined by an ODE of the form:
= = £ (1), x(0) = Xy
= Where is x the state, u is the control. As well as a sensor model of field of view
FOV = |Fy, Fy] and maximum range d.

= Given an obstacle set X,,s, and a inspection manifold S;, the objective of
the motion planning problem is to find, if it exists, a path r that provides the
viewpoints to the sensor such that the whole surface of S; is perceived, the
vehicle dynamics are respected and the cost of the path (distance, time,
etc) is minimized.

§
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Rapidly-exploring Random Tree-Of-Trees (RRTOT)

. . 3D reconstruction . | i
= Problem: given a representation of using 123D Catch = -

the structure find the optimal
coverage path.

= Challenges: can we find the
optimal pathe Can we converge
asymptotically to that solution?

» Goal: Provide an algorithm that can
incrementally derive the optimal
solution and be able to provide
admissible paths “anytime”.

OOOOOOOOOO



RRTOT: Functional Principle

Overcome the
limitations of
motion planners
designed for
navigation
problems.

.1
inspection

“ manifold ~

inspection
“ manifold ~
!

gl RPN 2
S = {M’VRRT*’ERRT*}
V= {x1}

RRTOT* Expand

—_ e - -

Vary the solution
topology — be
able to find the
optimal solution. X’

Overcome the
limitations of SIP
but in a
computationally
very expensive
way.
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RRTOT: Functional Principle

= Comparison with the state-of-the-art: RRTOT seems to be able to provide
solutions faster.

7 7
60/ 60| 601 60|
m i al [ m
40 40| 40t 40|
= - 2 (m S EW . ©nm
20 20| 201 20| M N N
N [ " [ ol o ‘ | I | : | [
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70,
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50 50 50 50 = ]
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Q o 20|
© 200 © 200 80, 200
180 ] 180 ™ oo
1 60 1 60 ] 200 .r'_l"llme e GO0 BOO
0 5 10 15 0 20 40 60 80 100
time [min] time [min]

= Comparison against: G Papadopoulos, H Kurniawati, N Patrikalakis, “*Asymptotically optimal path planning and
surface reconstruction for inspection”, IEEE International Conference on Robotics and Automation (ICRA) 2013.
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RRTOT: Indicative Solutions

=» Holonomic

= Nonholonomic

f
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An Incremental Sampling-based approach to Inspection Planning:
the Rapidly-exploring Random Tree Of Trees

Andreas Bircher, Kostas Alexis, Ulrich Schwesinger, Sammy Omari, Michael Burri and Roland Siegwart




Benefits and Disadvantages

= Quality of the Solution: Proven fo
provide  asymptotically optimal
solution.

= Complexity: Practically intractable
for large scale problems

= Purpose: More of a “theoretical
tool” to compare other algorithmes.
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Alternative Solution

= Can we find a “good enough” solution
but compute very fast?
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Basic Concepts of the Inspection Planner

= Main classes of existing 3D methods: = Structural Inspection Planner (SIP):

» Separated Approach (AGP + TSP or
Control)

= Driven by the idea that with a
continuously sensing sensor, the number
of viewpoints is not necessarily important

= Prone to be subopfimal . . . .
P but mostly their configuration in space.

= |n specific cases lead to infeasible paths

(nonholonomic vehicles) = Not a minimal set of viewpoints but a set

: : . : | of full coverage viewpoints positioned
= First attempts for optimal solutions via @ ! |

' such that the overall path gets
unified cycle

minimized.
» |n specific cases can lead to fthe

optimal solution » 2-step paradigm  with  viewpoint

alternation
= Very  high CPU and  Memory

Requirements & Time » Guaranteed feasible paths for both

holonomic and nonholonomic vehicles

f
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Structural Inspection Planner (SIP)

First solution
»  Load the mesh model

» k=0

»  Sample Inifial Viewpoint Configurations (Viewpoint Sampler)

»  Find a Collision-free path for all possible viewpoint combinations (BVS, RRT*)
» Populate the Cost Matrix and Solve the Traveling Salesman Problem (LKH)

»  while running

» Re-sample Viewpoint Configurations (Viewpoint Sampler)

» Re-compute the Collision-free paths (BVS, RRT*)

Av_?ilable
ime
» Re-populate the Cost Matrix and solve the new Traveling Salesman

Problem to update the current best inspection tour (LKH)

» end while Optimized solutions

» Return BestTour, CostBesiTour

3
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SIP: Supported World Representations

Same type of
representation for both
the inspection manifold
as well as any obstacles

T

Octomap [possibly enlarged voxels]

Not currently open-sourced

: .f Meshes [possibly downsampled]

Supported in the open-sourced SIP

Sampling-based and Collision-checking implemented
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SIP: Viewpoint Sampler

= Optimize Viewpoint Configurations

=  Admissible viewpoints are optimized for distance to
the neighboring viewpoints

= To guarantee admissible viewpoints, the position
solution g = [x,y,z] is constrained to allow finding an
orientation for which the triangular face is visible:

) - L)
(9 —21)"an = dmin |1 =1{1,2,3}
—(g — $1)TGN

_dma:c

Nyright

= Account for limited Field of View by imposing a
revoluted 2D-cone constraint. This is a nonconvex

problem which is then convexified by dividing the . .
problem into N, equal convex pieces. Incidence angle  Camera constraints

constraintsona  gnd convexification
triangular surface

Nieft

B rel T cam
(g — Llower Niower

rel cam

(g o CEupper)Tﬂnufpg)er
(g —m)" nrigne
(g —m) niege

Y
CoCoOQ
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QP + Linear
Constraints

SIP: Viewpoint Sampler

= Sample 1 Viewpoint/Triangular face

= Minimize the sum of squared distances to the

<«

preceding viewpoint g,k!, the subsequent
viewpoint g1 and the current viewpoint in the old
tour gk-1.
min (¢ =g (6" — g )+
g
A A L (A B (A A R /e
[ 'TLT i [ nfa;l i
nd ns s Nright
ng ng:rg Nieft
a% allj\jfxl + dmzn
st —aX gk >~ —akr) — dpas . .
gamNT nfﬂ’m T el Incidence angle  Camera constraints
n;%g%ef neam Tarel constraintsona  gnd convexification
nl nl o m triangular surface
Nieft NyepeM J

= The heading is determined according to:

min,,x

(k=1 —o%)* Jdp + (k=1 = g%)? Jd,, st

While ensuring visibility, try to align

. . k k
Visible(g™,¢") <—— 4 & Vehicle heading over a path

f
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= Compute RRT* Path
= Extract the t,, of the RRT* Path

= Populate the Cost Matrix

SIP: Point-to-Point Paths

State-Space Sampling — extension to Control-
Space sampling possible

Employ Boundary Value Solvers for
= Holonomic (with Yaw-rate constraints) or

= Nonholonomic Aerial Robots (fixed-wing UAVs —
2.5D approx., Dubins Airplane approx.)

Derive Collision-free paths that connect all
viewpoint configurations by invoking RRT*

Assemble the Traveling Salesman Problem
Cost Matrix using the path execution times f,,

f
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SIP: TSP Solution

Solve the (possibly asymmetric) TSP problem
using the Lin-Kernighan-Helsgaun heuristic

Extract the Optimized Inspection Tour

O/O

Identify 2 edges Remove them Insert two new tour-completing edges

O(N?2) , N the number of viewpoints

§
)

!
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Three-dimensional Coverage Path Planning via Viewpoint Resam-

pling and Tour Optimization using Aerial Robots
A. Bircher, K. Alexis, M. Kamel, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart







Large Scale Planning: Inspection of the JungFrau mountain
(Simulation)

)| AR

3
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Uniform Coverage Inspection Path-Planning (UC3D)

Problem: given a representation of
the structure, compute a full
coverage path that provides
uniform focus on the details.

Challenge: provide a good solution
at “anytime”.

Goal: an efficient  “anyfime”
inspection path planning algorithm
with uniformity guarantees.

Key for the solution: Voronoi-based

remeshing techniques and a
combination of viewpoint
computation algorithms, collision-

free planners and efficient TSP

solvers.

Load first low-fidelity Mesh
Model of the Structure

v

Compute viewpoints to
ensure Full Coverage and
Inspection Uniformity

v

Compute Point-to-Point
Collision-Free paths using
RRT*

v

Compute Inspection Route
via Solving a
Traveling Salesman Problem

v

— lteratively Updated Solution

1

Load higher-fidelity Mesh
Model of the Structure

Compute Inspection Route
via Solving a
Traveling Salesman Problem

*

Compute Point-to-Point
Collision-Free paths using
RRT*

*

Add viewpaints to ensure Full
Coverage and Inspection
Uniformity

% (m)

f
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UC3D: Remeshing techniques play a key role

25% 25%
reduction reduction =

z (m)
@ 3 o

Ltm)

z (m )m

y (m) x (m)

= Voronoi-based remeshing techniques allow for uniform downsampling of the mesh
with minimal structural loss

3
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UC3D: lterative UC3D-IPP

— b = Difference of lterative version:
Vi .<_V aAstC
Vi Yi-1 = For each higher quality mesh,

fozr all pr; € P; do z set of viewpoints, only some
if Is(foveredUniformly(pk_}i_ Vi~1) == FALSE then Sr?i(fjoltr?wngcl)\?erreoggded fo re-ensure
Vi, < ComputeViewpoint(py ;) '
Vi — Vi U Vi.i
for all v,, € V' do

for all v,, € V! do
C(n,m) < ConnectionDistance(v,,, V,, )

r; < ComputeViewpointsRoute(C(n, m))
return r;

12
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y (m)

UC3D: Basic UC3D-IPP Result

x (m)

y (m)

30

x (m)

y (m)

30

x (m)

y (m) x (m)

Sequential execution of the basic UC3D-IPP algorithm

§
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UCS3D: Experimental study on a Power Transforer
MockUp ) T

| — yref, ref ref _ref
Xreh {x, yre zr e
lIJ: Orientation

04—
EN 02—
0]
—
05. E 02—
=
N -0.4—
—
\g 0 -0.6 —
N -08—|
05, 1]
15
A
y (m)
15 N\
X x (m)
17\
\\ .
05~ N\ ll) —X {X' Y Z}
‘\\ } J— Xref: {Xref‘ yref' Zref}
0T\ — P Orientation
PN
05
y (m
(m) x (m)
/ 1.5
v//./v 4
o5
y (m)

x (m)
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Uniform Coverage Structural Inspection Path-Planning

for Micro Aerial Vehicles
K. Alexis, C. Papachristos, R. Siegwart, A. Tzes

Mesh Model Inspection Path Raw Camera Frames Reconstructed Model
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Code Examples and Tasks

» hitps://qithub.com/unr-
I I arl/autonomous mobile robot design course/iree/master/RO

S/path-planning/autonomous-exploration

» hitps://qithub.com/unr-
arl/autonomous mobile robot design course/tree/master/RO

S/path-planning/structural-inspection

::ROS



https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-planning/autonomous-exploration
https://github.com/unr-arl/autonomous_mobile_robot_design_course/tree/master/ROS/path-planning/structural-inspection

FiInd out more
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