
BadgerWorks

Topic: Polynomial Trajectory Planning for Quadrotor Flight

Dr. Kostas Alexis (CSE) 

Slides based on the paper of C. Richter, A. Bry, and N. Roy



Motivation

 The goal is to enable planning for collision

free navigation through complex

environments for quadrotors (and broadly

what we call Multirotor Aerial Vehicles).

 The method jointly optimizes polynomial path

segments and exploits the differential flatness

of quadrotors.



Motivation

 The goal of this work is to simultaneously find

and optimize a collision free quadrotor

trajectory through a complex real-world

environments in a manner that is

computationally efficient for real-time

operation.

 Explicit optimization step for high-speed

trajectories.



Problem Statement

 Given a 3D occupancy map of an environment, the goal is to efficiently compute:

 Feasible

 Minimum-snap

Trajectories that follow the shortest route from start to goal 

utilizing the full dynamic capabilities of the quadrotor



Solution Outline

 Argument: while it is possible to compute quadrotor trajectories using existing methods

for sampling-based kinodynamic planning or trajectory optimization, these methods

can be inefficient or impractical in complex real-world environments.

 The proposed solution is to utilize RRT* to find a route through the environment, initially

ignoring the dynamics of the vehicle. That route is pruned to a sequence of waypoints

representing the optimal route through the visibility graph of the environment. Then a

sequence of polynomial segments is jointly optimized to join those waypoints into a

smooth minimum-snap trajectory from start to goal. The method utilizes a differentially

flat model of the quadrotor and the associated control techniques.



Quadrotor Dynamics and Control

 In order to guarantee that we can precisely follow the polynomial trajectories to be

generated, the differential flatness property is utilized for the quadrotor equations of

motion:

 A polynomial trajectory segment is in fact three polynomial functions of time

specifying the independent evolution of the so-called flat output variables, x,y, and z

between two positions in 3D space.

 The nonlinear controller employed to follow differential trajectories (may) take the

form:



Quadrotor Dynamics and Control

 The intuition behind differential flatness lies in the fact that the quadrotor must always

align its axis of thrust with the total acceleration vector prescribed at every point

along the trajectory, thus determining its exact orientation and required control inputs.

 If the model equations were a perfect representation of the dynamics, and in the

absence of disturbances, the feed-forward term would carry the quadrotor precisely

across the trajectory.

 Since the desired trajectory and its derivatives are sufficient to compute the states

and control inputs at every point along the path in closed form, it effectively serves as

a simulation of the vehicle’s motion.



Polynomial Trajectory Optimization

 Goal: analytical method for generating minimum-snap polynomial trajectories to be

followed by a quadrotor that uses the control techniques described before.

 It is assumed that we have obtained a sequence of waypoints in 3D space

representing the optimal path through the visibility graph of the environment (e.g.,

from RRT*) and we wish to generate a minimum-snap polynomial path passing

through each of these waypoints.

 The choice of polynomial trajectories is natural for highly dynamic vehicles since these

trajectories can be obtained efficiently as the solution to a quadratic program (QP)

that minimizes a cost function of the path derivatives.

 This optimization framework allows the endpoints of the path segments to be optimally fixed

to desired values or left free, and the polynomials can be jointly optimized while maintaining

continuity of the derivatives up to an arbitrary selected order.

 First a constrained QP formulation is derived and then reformulated as an

unconstrained one (for numerical stability).



Cost Function for Minimizing Derivatives

 For quadrotors, a single trajectory segment between two points is composed of

independent polynomial trajectories for the flat output variables x,y,z,ψ. Each

polynomial segment takes the form:

 The cost function for optimization of each polynomial is:

 Where T is the traversal time for the trajectory segment.



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 We begin by writing the square of the polynomial as a convolution sum:

 Where (𝑃2)𝑛 is the n-th coefficient of the squared polynomial.



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 The r-th derivative of a polynomial is



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 Hence the component of the cost function associated with the r-th derivative is:



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 Computation of the Hessian begins by differentiating 𝐽𝑟



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 Then differentiating again wrt each of the polynomials:



Cost Function for Minimizing Derivatives

 To solve for a minimum-snap trajectory, c4 would be nonzero while all the other

coefficients would be set to zero. This function can be written in matrix form:

 Where ҧ𝑝 is a vector of polynomial coefficients and Q is a cost matrix constructed as

the weighted sum of Hessian matrices for each of the polynomial derivatives.

 Hessian matrices will be derived by writing the cost function in terms of the polynomial

coefficients and then differentiating twice with respect to those coefficients.

 Finally

 Where the complete cost matrix 𝑄 is given by:

 With 𝑐𝑟 being the user-specified penalty on the r-th derivative.



Constraints

 The constraints on the endpoints of a polynomial segment, which are used to either fix

a given derivative to a desired value or ensure continuity of free derivatives, are

imposed as a linear function of the coefficients:

 Where A is constructed by evaluating the component of the derivative in

corresponding to the appropriate coefficient



Constraints

 These constraints either fix the position, velocity, acceleration, and higher order

derivatives to desired values, or allow them to float subject to minimization of the cost

function.

 Having assembled Q, A and b, the QP can be written as:

 Where the decision variables are the coefficients of the polynomial trajectory.



Reformulation as Unconstrained QP

 The above method works well for single segments and small optimization problems but

may become ill-conditioned for larger joint optimization problems.

 To avoid ill-conditioning, we reformulate the problem as an unconstrained QP to solve

for endpoint derivatives directly as the decision variables, rather than the indirect

method of solving for polynomial coefficients.

 Once the optimal waypoint derivatives are found, the minimum order polynomial

connecting each pair of waypoints can be obtained by inverting the appropriate

constraint matrix.



Reformulation as Unconstrained QP

 We begin with the original cost function

 We utilize the A matrix as a mapping between polynomial coefficients and the

endpoint derivatives

 And therefore the cost function for a single polynomial segment takes the form



Reformulation as Unconstrained QP

 We begin with the original cost function

 We utilize the A matrix as a mapping between polynomial coefficients and the

endpoint derivatives

 And therefore the cost function for a single polynomial segment takes the form

 Goal (reminder!): given an initial and a final state, and a sequence of intermediate

waypoint locations, we wish to find the waypoint velocities, accelerations, and higher

order derivatives such that the minimum-order polynomials connecting those

waypoints wil minimize the aforementioned cost function.



Reformulation as Unconstrained QP

 In the case of a joint optimization, we construct a 𝑄𝑗𝑜𝑖𝑛𝑡 and 𝐴𝑗𝑜𝑖𝑛𝑡 matrices, which are

simply block diagonal matrices composed of the 𝑄 and 𝐴 matrices for the individual

subproblems.

 The derivatives involved in the joint optimization are concatenated into a vector 𝐷
which typically includes a full set of derivatives to be fixed at the beginning and end

of the trajectory (i.e., beging and end with zero velocity etc) alongside with the

derivatives to be fixed at the waypoints (i.e., positions).

 This formulation is easily adapted to fix or float any of the derivatives.



Reformulation as Unconstrained QP

 We sort 𝐷 into a block of derivatives to be fixed in the optimization 𝐷𝐹 and a block of

free derivatives we intend to optimize (𝐷𝑃)

 We then rely on a selector matrix 𝑀 to map the derivatives in 𝐷 to an arrangement

that is consistent with the sequence of block-diagonal elements in Ajoint. In particular,

since each block-diagonal element of Ajoint represents the optimization of a single

segment, the 𝑀 matrix also serves to duplicate each intermediate waypoint derivative

value to appear both at the end of one segment and at the beginning of the

subsequent segment, therefore maintaining continuity of the derivatives.



Reformulation as Unconstrained QP

 New Total Cost Function for the Joint Optimization

 With 𝑅 denoting the new augmented cost matrix

 Constraints are now embedded within the cost function therefore yielding an unconstrained

optimization problem.



Reformulation as Unconstrained QP

 Partitioning 𝑅 according to the number of fixed and free derivatives and then

expanding the cost function

 Where the first term is simply a fixed cost incurred by satisfying the fixed derivatives.

 Differentiating 𝐽 wrt 𝐷𝑝 and equating to zero yields the optimal values for the free

derivatives

 The optimal waypoint derivatives imply the minimum order polynomial segments

needed to construct the complete trajectory.



Time Allocation

 So far we have required a fixed time associated with each segment in the complete

trajectory since these times factor into the construction of the cost matrix.

 These segment times act as constraints on the solution quality, but can be allowed to

vary to improve the overall solution.

 We therefore choose initial segment times and then iteratively refine the times in order

to obtain better paths wrt the cost function.



Time Allocation

 Extension of the polynomial cost function to choose segment times and thus

determine the total trajectory traversal time.

 We attempt to minimize

 Where 𝑇 is the sum of segment times for the complete path and 𝑘𝑇 is a user-specified

penalty on time.

 The first time this cost function is simply the original cost function for polynomial

optimization.

 When penalizing only acceleration, jerk or snap, this original cost can be driven

arbitrarily small by increasing the total time.

 This modified cost performs a trade off between minimizing the polynomial cost and

traversing the path quickly.

 Increasing the penalty on time, 𝑘𝑇, results in more aggressive maneuvers.



Time Allocation

 We optimize the modified cost function via gradient descent

 Gradient is estimated numerically by perturbing each segment by some time 𝛿𝑡.

 It is not required that the total path time is conserved in a given perturbation.

 Therefore the path time will grow or diminish as necessary to optimize the modified cost.



Ensuring Feasibility

 If a particular trajectory segment is found to intersect an obstacle after optimization,

an additional waypoint is simply added halfway between its two ends, splitting this

segment into two.

 This midpoint is known to be collision-free because it lies on the optimal route through

the visibility graph.

 These additional waypoints are added incrementally until the polynomial trajectory is

free of collision.



Indicative Result



Find out more

 Richter, C., Bry, A. and Roy, N., 2016. Polynomial trajectory planning for

aggressive quadrotor flight in dense indoor environments. In Robotics

Research (pp. 649-666). Springer, Cham.

 Charles, R., Bry, A. and Roy, N., 2013. Polynomial trajectory planning for

quadrotor flight. In Proceedings of the IEEE International Conference on

Robotics and Automation, ICRA.



Thank you! 
Please ask your question!


