BadgerWorks Lectures

Topic: State Estimation

World state (or system state)

- Belief state:
 - Our belief/estimate of the world state
- World state:
 - Real state of the robot in the real world

State Estimation

- What parts of the world state are (most) relevant for a flying robot?
 - Position
 - Velocity
 - Orientation
 - Attitude rate
 - Obstacles
 - Map
 - Positions and intentions of other robots/human beings

State Estimation

- Cannot observe world state directly no sensor tells us where we really are but rather some measurements related to that (and noisy!)
- Need to estimate the world state
 - But How?
 - Infer world state from sensor data
 - Infer world state from executed motions/actions

Sensor Model

Robot perceives the environment through its sensors:

$$\mathbf{z} = h(\mathbf{x})$$

ightharpoonup Where z is the sensor reading, h is the world state.

■ Goal: Infer the state of the world from sensor readings.

$$\mathbf{x} = h^{-1}(\mathbf{z})$$

Motion Model

- Robot executes an action (or control) u
 - e.g: move forward at 1m/s
- Update belief state according to the motion model:

$$\mathbf{x}' = g(\mathbf{x}, \mathbf{u})$$

lacktriangle Where x' is the current state and x is the previous state.

Probabilistic Robotics

- Sensor observations are noisy, partial, potentially missing.
- All models are partially wrong and incomplete.
- Usually we have prior knowledge.

Probabilistic Robotics

- lacktriangleright Probabilistic sensor models: $\, {f p}({f z} | {f x}) \,$
- lacktriangleright Probabilistic motion models: $\mathbf{p}(\mathbf{x'}|\mathbf{x},\mathbf{u})$
- Fuse data between multiple sensors (multi-modal):

$$\mathbf{p}(\mathbf{x}|\mathbf{z}_{GPS},\mathbf{z}_{BARO},\mathbf{z}_{IMU})$$

Fuse data over time (filtering):

$$\mathbf{p}(\mathbf{x}|\mathbf{z}_1,\mathbf{z}_2,...,\mathbf{z}_t)$$

 $\mathbf{p}(\mathbf{x}|\mathbf{z}_1,\mathbf{u}_1,\mathbf{z}_2,\mathbf{u}_2,...,\mathbf{z}_t,\mathbf{u}_5)$

BadgerWorks Lectures

Topic: State Estimation – Recap on Probabilities

Probability theory

- Random experiment that can produce a number of outcomes, e.g. a rolling dice.
- Sample space, e.g.: {1,2,3,4,5,6}
- Event A is subset of outcomes, e.g. {1,3,5}
- Probability P(A), e.g. P(A)=0.5

Axioms of Probability theory

$$-0 \le P(A) \le 1$$

•
$$P(\Omega) = 1, \ P(\emptyset) = 0$$

-
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Discrete Random Variables

- X denotes a random variable
- ightharpoonup X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$
- $ightharpoonup P(X=x_i)$ is the probability that the random variable X takes on value x_i
- P(.) is called the probability mass function
- Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab, kitchen

Continuous Random Variables

- X takes on continuous values.
- ightharpoonup P(X=x) or P(x) is called the **probability density function (PDF)**.

Thrun, Burgard, Fox, "Probabilistic Robotics", MIT Press, 2005

Example:

Proper Distributions Sum To One

Discrete Case

$$\sum_{x} P(x) = 1$$

- Continuous Case
$$\int p(x) dx = 1$$

Joint and Conditional Probabilities

•
$$p(X = x, \text{ and } Y = y) = P(x, y)$$

■ If X and Y are **independent** then:

$$P(x,y) = P(x)P(y)$$

Is the probability of x given y

$$P(x|y)P(y) = P(x,y)$$

If X and Y are independent then:

$$P(x|y) = P(x)$$

Conditional Independence

Definition of conditional independence:

$$P(x,y|z) = P(x|z)P(y|z)$$

Equivalent to:

$$P(x|z) = P(x|y,z)$$

$$P(y|z) = P(y|x,z)$$

Note: this does not necessarily mean that:

$$P(x,y) = P(x)P(y)$$

Marginalization

Discrete case:

$$P(x) = \sum_{y} P(x, y)$$

Continuous case:

$$p(x) = \int p(x, y) dy$$

Marginalization example

P(X,Y)	x1	x1	x1	x1	P(Y) ↓
y1	1/8	1/16	1/32	1/32	1/4
y1	1/16	1/8	1/32	1/32	1/4
y1	1/16	1/16	1/16	1/16	1/4
y1	1/4	0	0	0	1/4
P(X) →	1/2	1/4	1/8	1/8	1

Expected value of a Random Variable

Discrete case:
$$E[X] = \sum_i x_i P(x_i)$$

$${\color{red} \bullet}$$
 Continuous case:
$$E[X] = \int x P(X=x) dx$$

- The expected value is the weighted average of all values a random variable can take on.
- Expectation is a linear operator:

$$E[aX + b] = aE[X] + b$$

Covariance of a Random Variable

Measures the square expected deviation from the mean:

$$Cov[X] = E[X - E[X]]^2 = E[X^2] - E[X]^2$$

Estimation from Data

ullet Observations: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathcal{R}^d$

• Sample Mean: $\mu = \frac{1}{n} \sum_i \mathbf{x}_i$

Sample Covariance:

$$\Sigma = \frac{1}{n-1} \sum_{i} (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)$$

BadgerWorks Lectures

Topic: State Estimation – Reasoning with Bayes Law

The State Estimation problem

- We want to estimate the world state x from:
 - Sensor measurements z and
 - Controls u
- We need to model the relationship between these random variables, i.e.

$$p(\mathbf{x}|\mathbf{z})$$
 $p(\mathbf{x}'|\mathbf{x},\mathbf{u})$

Causal vs. Diagnostic Reasoning

$$P(\mathbf{x}|\mathbf{z})$$
 is diagnostic $P(\mathbf{z}|\mathbf{x})$ is causal

- Diagnostic reasoning is typically what we need.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge in diagnostic reasoning.

Bayes rule

Definition of conditional probability:

$$P(x,z) = P(x|z)P(z) = P(z|x)P(x)$$

Bayes rule:

Observation likelihood Prior on world state $P(x|z) = \frac{P(z|x)P(x)}{P(z)}$

Prior on sensor observations

Normalization

- ightharpoonup Direct computation of P(z) can be difficult.
- Idea: compute improper distribution, normalize afterwards.

• STEP 1:
$$L(x|z) = P(z|x)P(x)$$

- STEP 2:
$$P(z) = \sum_x P(z,x) = \sum_x P(z|x)P(x) = \sum_x L(x|z)$$

• STEP 3:
$$P(x|z) = L(x|z)/P(z)$$

Normalization

- ightharpoonup Direct computation of P(z) can be difficult.
- Idea: compute improper distribution, normalize afterwards.

• STEP 1:
$$L(x|z) = P(z|x)P(x)$$

$$\qquad \text{STEP 2:} \quad P(z) = \sum_x P(z,x) = \sum_x P(z|x) P(x) = \sum_x L(x|z)$$

• STEP 3:
$$P(x|z) = L(x|z)/P(z)$$

Example: Sensor Measurement

- Quadrotor seeks the Landing Zone
- The landing zone is marked with many bright lamps
- The quadrotor has a light sensor.

Example: Sensor Measurement

- Binary sensor $Z \in \{bright, bright\}$
- lacktriangleright Binary world state $X \in \{home, home\}$
- Sensor model P(Z=bright|X=home)=0.6 P(Z=bright|X=home)=0.3
- lacktriangledown Prior on world state P(X=home)=0.5
- Assume: robot observes light, i.e. $\,Z=bright\,$
- What is the probability P(X=home|Z=bright) that the robot is above the landing zone.

Example: Sensor Measurement

- Sensor model: P(Z=bright|X=home)=0.6 P(Z=bright|X=home)=0.3
- lacktriangledown Prior on world state: P(X=home)=0.5
- Probability after observation (using Bayes):

$$P(X = home|Z = bright) = P(bright|home)P(home)$$

$$\frac{P(bright|home)P(home) + P(bright|home)P(home)}{0.6 \cdot 0.5} = 0.67$$

Actions (Motions)

- Often the world is dynamic since
 - Actions are carried out by the robot
 - Actions are carried out by other agents
 - Or simply because time is passing and the world changes
- How can we incorporate actions?

Example actions

- MAV accelerates by changing the speed of its motors.
- The ground robot moves due to it being on an inclined terrain.
- Actions are never carried out with absolute certainty: leave a quadrotor hover and see it drifting!
- In contrast to measurements, actions generally increase the uncertainty of the state estimate

Action Models

To incorporate the outcome of an action u into the current estimate ("belief"), we use the conditional pdf

$$p(x' \mid u, x)$$

This term specifies the probability that executing the action u in state x will lead to state x'

Example: Take-Off

- Action: $u \in \{\text{takeoff}\}$
- World state: $x \in \{\text{ground}, \text{air}\}$

Integrating the Outcome of Actions

Discrete case:

$$P(x' \mid u) = \sum_{x} P(x' \mid u, x) P(x)$$

Continuous case:

$$p(x' \mid u) = \int p(x' \mid u, x) p(x) dx$$

Example: Take-Off

- Prior belief on robot state: P(x = ground) = 1.0
- Robot executes "take-off" action
- What is the robot's belief after one time step?

$$P(x' = \text{ground}) = \sum_{x} P(x' = \text{ground} \mid u, x) P(x)$$

$$= P(x' = \text{ground} \mid u, x = \text{ground}) P(x = \text{ground})$$

$$+ P(x' = \text{ground} \mid u, x = \text{air}) P(x = \text{air})$$

$$= 0.1 \cdot 1.0 + 0.01 \cdot 0.0 = 0.1$$

BadgerWorks Lectures

Topic: State Estimation – Bayes Filter

Markov Assumption

Observations depend only on current state

$$P(z_t|x_{0:t}, z_{1:t-1}, u_{1:t}) = P(z_t|x_t)$$

Current state depends only on previous state and current action

$$P(x_t|x_{0:t}, z_{1:t}, u_{1:t}) = P(x_t|x_{t-1}, u_t)$$

Markov Chain

A Markov Chain is a stochastic process where, given the present state, the past and the future states are independent.

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filter

Given

- lacktriangleright Sequence of observations and actions: z_t, u_t
- Sensor model: P(z|x)
- Action model: $P(x^\prime|x,u)$
- lacktriangleright Prior probability of the system state: P(x)

Desired

- lacktriangle Estimate of the state of the dynamic system: ${oldsymbol{\mathcal{X}}}$
- Posterior of the state is also called belief:

$$Bel(x_t) = P(x_t|u_1, z_1, ..., u_t, z_t)$$

Bayes Filter Algorithm

- For each time step, do:
 - Apply motion model:

$$\overline{Bel}(x_t) = \sum_{x_t-1} P(x_t|x_{t-1}, u_t)Bel(x_{t-1})$$

Apply sensor model:

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

 \blacksquare η is a normalization factor to ensure that the probability is maximum 1.

- Discrete state: $x \in \{1, 2, ..., w\} \times \{1, 2, ..., h\}$
- Belief distribution can be represented as a grid
- This is also called a historigram filter

- $\quad \text{ Action: } \quad u \in \{north, east, south, west\}$
- Robot can move one cell in each time step
- Actions are not perfectly executed

- Action
- Robot can move one cell in each time step
- Actions are not perfectly executed
- Example: move east

$$x_{t-1} =$$
 $u = east$

■ 60% success rate, 10% to stay/move too far/ move one up/ move one down

- Binary observation: $z \in \{marker, marker\}$
- One (special) location has a marker
- Marker is sometimes also detected in neighboring cells

Let's start a simulation run...

- **-** †=0
- Prior distribution (initial belief)
- Assume that we know the initial location (if not, we could initialize with a uniform prior)

- t=1, u =east, z=no-marker
- Bayes filter step 1: Apply motion model

- t=1, u =east, z=no-marker
- Bayes filter step 2: Apply observation model

- t=2, u =east, z=marker
- Bayes filter step 1: Apply motion model

- t=2, u =east, z=marker
- Bayes filter step 2: Apply observation model
- Question: where is the robot?

BadgerWorks Lectures

Topic: State Estimation – Kalman Filter

- Bayes filter is a useful tool for state estimation.
- Histogram filter with grid representation is not very efficient.
- How can we represent the state more efficiently?

- Bayes filter with continuous states
- State represented with a normal distribution
- Developed in the late 1950's. A cornerstone. Designed and first application: estimate the trajectory of the Apollo missiles.
- Kalman Filter is very efficient (only requires a few matrix operations per time step).
- Applications range from economics, weather forecasting, satellite navigation to robotics and many more.

Univariate distribution

Variance (squared standard deviation)

$$P(X = x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2})$$

- lacktriangleright Multivariate normal distribution: $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$
- Mean: $\mu \in \mathcal{R}^n$
- lacksquare Covariance: $oldsymbol{\Sigma} \in \mathbf{R}^{n imes m}$
- Probability density function:

$$p(\mathbf{X} = \mathbf{x}) = \mathcal{N}(\mathbf{x}; \mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} \exp(-\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu))$$

Properties of Normal Distributions

Linear transformation – remains Gaussian

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}), \mathbf{Y} \sim \mathbf{A}\mathbf{X} + \mathbf{B}$$

 $\Rightarrow \mathbf{Y} \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{B}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)$

Intersection of two Gaussians – remains Gaussian

$$\mathbf{X}_1 \sim \mathcal{N}(oldsymbol{\mu}_1, oldsymbol{\Sigma}_1), \mathbf{X}_2 \sim \mathcal{N}(oldsymbol{\mu}_2, oldsymbol{\Sigma}_2)$$

$$p(\mathbf{X}_1)p(\mathbf{X}_2) = \mathcal{N}\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}\right)$$

Properties of Normal Distributions

Linear transformation – remains Gaussian

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}), \mathbf{Y} \sim \mathbf{A}\mathbf{X} + \mathbf{B}$$

 $\Rightarrow \mathbf{Y} \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{B}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)$

Intersection of two Gaussians – remains Gaussian

$$\mathbf{X}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1), \mathbf{X}_2 \sim \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\mathbf{X}_1)p(\mathbf{X}_2) = \mathcal{N}\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2}\boldsymbol{\mu}_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}\right)$$

Consider a time-discrete stochastic process (Markov chain)

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

Assume that the system evolves linearly over time, then

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1}$$

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

 Assume that the system evolves linearly over time, then depends linearly on the controls

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t$$

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) with a Gaussian

$$\mathbf{x}_t \sim \mathcal{N}(\mu_t, \mathbf{\Sigma}_t)$$

 Assume that the system evolves linearly over time, then depends linearly on the controls, and has zero-mean, normally distributed process noise

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$$

- With $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$

Linear Observations

Further, assume we make observations that depend linearly on the state

$$\mathbf{z}_t = \mathbf{C}\mathbf{x}_t$$

Linear Observations

 Further, assume we make observations that depend linearly on the state and that are perturbed zero-mean, normally distributed observation noise

$$\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$$

• With $\delta_t \sim \mathcal{N}(\mathbf{0},\mathbf{R})$

Estimates the state x_t of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$$

And (linear) measurements of the state

$$\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$$

• With $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ and $\delta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$

- lacksquare State $\mathbf{x} \in \mathbb{R}^n$
- $lackbox{ iny Controls} \ \mathbf{u} \in \mathbb{R}^l$
- lacksquare Observations $\mathbf{z} \in \mathbb{R}^k$
- Process equation $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \epsilon_t$
- Measurement equation $\mathbf{z}_t = \mathbf{C}\mathbf{x}_t + \delta_t$

Initial belief is Gaussian

$$Bel(x_0) = \mathcal{N}(\mathbf{x}_0; \mu_0, \Sigma_0)$$

Next state is also Gaussian (linear transformation)

$$\mathbf{x}_t \sim \mathcal{N}(\mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{u}_t, \mathbf{Q})$$

Observations are also Gaussian

$$\mathbf{z}_t \sim \mathcal{N}(\mathbf{C}\mathbf{x}_t, \mathbf{R})$$

Recall: Bayes Filter Algorithm

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t) Bel(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}$$

Apply sensor model

$$Bel(\mathbf{x}_t) = \eta p(\mathbf{z}_t | \mathbf{x}_t) \overline{Bel}(\mathbf{x}_t)$$

From Bayes Filter to Kalman Filter

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_t) = \int \underbrace{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)}_{\mathcal{N}(\mathbf{x}_t; \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_k t, \mathbf{Q})} \underbrace{Bel(\mathbf{x}_{t-1})}_{\mathcal{N}(\mathbf{x}_{t-1}; \mu_{t-1}, \mathbf{\Sigma}_{t-1})} d\mathbf{x}_{t-1}$$

- For each step, do:
 - Apply motion model

$$\overline{Bel}(\mathbf{x}_{t}) = \int \underbrace{p(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{u}_{t})}_{\mathcal{N}(\mathbf{x}_{t}; \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_{k}t, \mathbf{Q})} \underbrace{Bel(\mathbf{x}_{t-1})}_{\mathcal{N}(\mathbf{x}_{t-1}; \mu_{t-1}, \mathbf{\Sigma}_{t-1})} d\mathbf{x}_{t-1}$$

$$= \mathcal{N}(\mathbf{x}_{t}; \mathbf{A}\mu_{t-1} + \mathbf{B}\mathbf{u}_{t}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{T} + \mathbf{Q})$$

$$= \mathcal{N}(\mathbf{x}_{t}; \bar{\mu}_{t}, \bar{\Sigma}_{t})$$

- For each step, do:
 - Apply sensor model

$$\overline{Bel}(\mathbf{x}_t) = \eta \underbrace{p(\mathbf{z}_t | \mathbf{x}_t)}_{\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R})} \overline{Bel}(\mathbf{x}_t)
= \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}\bar{\mu}), (\mathbf{I} - \mathbf{K}_t)\mathbf{C})\bar{\Sigma})
= \mathcal{N}(x_t; \mu_t, \Sigma_t)$$

- With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^T (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^T + \mathbf{R})^{-1}$$
 (Kalman Gain)

Blends between our previous estimate $\bar{\mu}_t$ and the discrepancy between our sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. And this depends on a formula based on the errors of sensing etc. In fact it depends on the ratio between our uncertainty Σ and the uncertainty of our sensor observations R.

- For each step, do:
 - Apply sensor model

$$\overline{Bel}(\mathbf{x}_t) = \eta \underbrace{p(\mathbf{z}_t | \mathbf{x}_t)}_{\mathcal{N}(\mathbf{z}_t; \mathbf{C}\mathbf{x}_t, \mathbf{R})} \overline{Bel}(\mathbf{x}_t)
= \mathcal{N}(\mathbf{x}_t; \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}\bar{\mu}), (\mathbf{I} - \mathbf{K}_t)\mathbf{C})\bar{\Sigma})
= \mathcal{N}(x_t; \mu_t, \Sigma_t)$$

- With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^T (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^T + \mathbf{R})^{-1}$$
 (Kalman Gain)

Kalman Filter Algorithm

- For each step, do:
 - Apply motion model (prediction step)

$$ar{m{\mu}}_t = \mathbf{A}m{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t \ ar{m{\Sigma}}_t = \mathbf{A}m{\Sigma}\mathbf{A}^{ op} + \mathbf{Q}$$

Apply sensor model (correction step)

$$m{\mu}_t = ar{m{\mu}}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}ar{m{\mu}}_t)$$
 $m{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t\mathbf{C})ar{m{\Sigma}}_t$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^ op (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^ op + \mathbf{R})^{-1}$$

Kalman Filter Algorithm

Prediction & Correction steps can happen in any order.

- For each step, do:
 - Apply motion model (prediction step)

$$ar{m{\mu}}_t = \mathbf{A}m{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t \ ar{m{\Sigma}}_t = \mathbf{A}m{\Sigma}\mathbf{A}^{ op} + \mathbf{Q}$$

Apply sensor model (correction step)

$$m{\mu}_t = ar{m{\mu}}_t + \mathbf{K}_t(\mathbf{z}_t - \mathbf{C}ar{m{\mu}}_t)$$
 $m{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t\mathbf{C})ar{m{\Sigma}}_t$

• With
$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^{ op} (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^{ op} + \mathbf{R})^{-1}$$

Kalman Filter Algorithm

Prediction & Correction steps can happen in any order.

Prediction

$$ar{oldsymbol{\mu}}_t = \mathbf{A}oldsymbol{\mu}_{t-1} + \mathbf{B}\mathbf{u}_t$$

$$ar{\mathbf{\Sigma}}_t = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^ op + \mathbf{Q}$$

Correction

$$oldsymbol{\mu}_t = ar{oldsymbol{\mu}}_t + \mathbf{K}_t (\mathbf{z}_t - \mathbf{C}ar{oldsymbol{\mu}}_t)$$

$$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{C}) \mathbf{ar{\Sigma}}_t$$

$$\mathbf{K}_t = ar{\mathbf{\Sigma}}_t \mathbf{C}^ op (\mathbf{C} ar{\mathbf{\Sigma}}_t \mathbf{C}^ op + \mathbf{R})^{-1}$$

Complexity

 Highly efficient: Polynomial in the measurement dimensionality k and state dimensionality n

$$O(k^{2.376} + n^2)$$

- Optimal for linear Gaussian systems
 - But most robots are nonlinear! This is why in practice we use Extended Kalman Filters and other approaches.

BadgerWorks Lectures Topic: Extended Kalman Filter

Dr. Kostas Alexis (CSE)

Kalman Filter Assumptions

- Gaussian distributions and noise
- Linear motion and observation model
 - What if this is not the case?

$$x_t = A_t x_{t-1} + B_t u_t + \epsilon_t$$

$$z_t = C_t x_t + \delta_t$$

Linearity Assumption Revisited

Nonlinear Function

Nonlinear Dynamical Systems

- Real-life robots are mostly nonlinear systems.
- The motion equations are expressed as nonlinear differential (or difference) equations:

$$x_t = g(u_t, x_{t-1})$$

Also leading to a nonlinear observation function:

$$z_t = h(x_t)$$

Taylor Expansion

- Solution: approximate via linearization of both functions
- Motion Function:

$$g(x_{t-1}, u_t) \approx g(\mu_{t-1}, u_t) + \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$= g(\mu_{t-1}, u_t) + G_t(x_{t-1} - \mu_{t-1})$$

Observation Function:

$$h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \mu_t)$$
$$= h(\bar{\mu}_t) + H_t(x_t - \mu_t)$$

Reminder: Jacobian Matrix

- \blacksquare It is a non-square matrix $m \times n$ in general
- Given a vector-valued function:

$$g(x) = \begin{pmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{pmatrix}$$

The Jacobian matrix is defined as:

$$G_{x} = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}} & \frac{\partial g_{m}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}} \end{pmatrix}$$

Reminder: Jacobian Matrix

▶ It is the orientation of the tangent plane to the vector-valued function at a given point

Generalizes the gradient of a scaled-valued function.

Extended Kalman Filter

- For each time step, do:
- Apply Motion Model:

$$ar{\mu}_t = g(\mu_{t-1}, u_t)$$
 $ar{\Sigma}_t = G_t \Sigma G_t^\top + Q$ with $G_t = \frac{\partial g(\mu_{t-1}, u_t)}{\partial x_{t-1}}$

Apply Sensor Model:

$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

where
$$K_t = \bar{\Sigma}_t H_t^{\top} (H_t \bar{\Sigma}_t H_t^{\top} + R)^{-1}$$
 and $H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t}$

Linearity Assumption Revisited

Nonlinear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

Linearized Motion Model

The linearized model leads to:

$$p(x_t \mid u_t, x_{t-1}) \approx \det (2\pi R_t)^{-\frac{1}{2}}$$

$$\exp \left(-\frac{1}{2} (x_t - g(u_t, \mu_{t-1}) - G_t (x_{t-1} - \mu_{t-1}))^T \right)$$

$$R_t^{-1} (x_t - g(u_t, \mu_{t-1}) - G_t (x_{t-1} - \mu_{t-1}))$$
linearized model

 $lacktriangleright R_t$ describes the noise of the motion.

Linearized Observation Model

The linearized model leads to:

$$p(z_t \mid x_t) = \det (2\pi Q_t)^{-\frac{1}{2}}$$

$$\exp \left(-\frac{1}{2} \left(z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t\right)\right)^T\right)$$

$$Q_t^{-1} \left(z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t\right)\right)$$
linearized model

 $lackbox{ }Q_t$ describes the noise of the motion.

EKF Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

2:
$$\bar{\mu}_t = \underline{g(u_t, \mu_{t-1})}$$

3: $\bar{\Sigma}_t = \overline{G_t \Sigma_{t-1} G_t^T} + R_t$

$$A_t \leftrightarrow G_t$$

3:
$$\bar{\Sigma}_t = \overline{G_t} \, \Sigma_{t-1} \, G_t^T + R_t$$

$$4: \quad K_t = \bar{\Sigma}_t \, H_t^T (H_t \, \bar{\Sigma}_t \, H_t^T + Q_t)^{-1}$$

$$C_t \leftrightarrow H_t$$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \underline{h}(\bar{\mu}_t))$$
6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

6:
$$\Sigma_t = (I - K_t H_t) \Sigma_t$$

7:
$$return \mu_t, \Sigma_t$$

KF vs EKF

EKF Summary

- Extension of the Kalman Filter.
- One way to deal with nonlinearities.
- Performs local linearizations.
- Works well in practice for moderate nonlinearities.
- Large uncertainty leads to increased approximation error.

EKF Discussion

EKF Discussion

EKF Discussion

Find out more

- Thrun et al.: "Probabilistic Robotics", Chapter 3
- Schön and Lindsten: "Manipulating the Multivariate Gaussian Density"
- "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- http://home.wlu.edu/~levys/kalman_tutorial/
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
- http://www.autonomousrobotslab.com/the-kalman-filter.html
- <u>http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf</u>
- http://www.cs.unc.edu/~welch/kalman/
- http://home.wlu.edu/~levys/kalman_tutorial/
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
- http://www.autonomousrobotslab.com/literature-and-links.html

Code Examples and Tasks

- KF, EKF, UKF
 - Kalman Filter: https://github.com/unr-arl/drones_demystified/tree/master/matlab/state-estimation/kalman-filter

