BadgerWorks Lectures
Topic: State Estimation



How do |
estimate my
position?




World state (or system state)

» Belief state:

= OQur belief/estimate of the world state

» World state:

» Real state of the robot in the real world




State Estimation

= What parts of the world state are (most) relevant for a flying robot?

= Position
. Satellite 2
=» Velocit
Y _ L4 sateliite 3
. ° Satellite 1 N
= Qrientation g , g‘
» Attitude rate ;":
\ r, (': Iy ,»’/ ,, >

» QObstacles
= Map

= Positions and intentions of other robots/human beings




State Estimation

= Cannot observe world state directly — no sensor tells us where we really are
but rather some measurements related to that (and noisy!)

= Need to estimate the world state

= But How?
» |nfer world state from sensor data

» |nfer world state from executed motions/actions




Sensor Model

= Robot perceives the environment through its sensors:
z = h(x)

= Where z is the sensor reading, h is the world state.

= Goal: Infer the state of the world from sensor readings.

x = h'(z)




Motion Model

= Robot executes an action (or control) u

= e.g: move forward at Tm/s

= Update belief state according to the motion model:

x = g(x,u)

= Where x’ is the current state and x is the previous state.




Probabillistic Robotics

= Sensor observations are noisy, partial, potentially missing.
= All models are partially wrong and incomplete.

= Usually we have prior knowledge.




Probabillistic Robotics

Probabilistic sensor models: P (Z ‘ X)

/
Probabilistic motion models: p(X ‘Xj U)

Fuse data between multiple sensors (multi-modal):

p(X‘ZGF’Sa ZBARO: ZIMU )

Fuse data over time (filtering):

p(x
p(x

Z1,Z2, ..., Zt)

71, U1, Zo, Us, ..., Z¢, Us)



BadgerWorks Lectures
Topic: State Estimation — Recap on Probabilities



Probbabillity theory

Random experiment that can produce a number of outcomes, e.g. a rolling
dice.

Sample space, e.g.: {1,2,3,4,5,6}
Event A is subset of outcomes, e.g. {1,3,5}
Probability P(A), e.g. P(A)=0.5



Axioms of Probabillity theory
-0 < P(A) <1
-P(Q)=1, P(0)=0
- PLAUB) =P(A)+ P(B) — P(ANn B)
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Discrete Random Variables

X denotes a random variable
X can take on a countable number of values in {X;,X,,...,X.}
P(X=x;) is the probability that the random variable X takes on value x;

P(.) is called the probability mass function

Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,
kitchen



Continuous Random Variables

» X takes on continuous values.

= P(X=x) or P(x) is called the probability density function (PDF).

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005

= Example:

p(x)




Proper Distributions Sum To One

= Discrete Case Z P(ZE) — 1

= Continuous Case /p([E)dZE =3



Joint and Conditional Probabillities
- p(X =2, and Y =y) = P(x,y)

» |f X and Y are independent then:
P(z,y) = P(z)P(y)

= |s the probability of x giveny

P(x|ly)P(y) = P(z,y)

» |f X and Y are independent then:

P(zly) = P(x)



Conditional Independence

= Definition of conditional independence:
P(x,y|z) = P(z[z)P(y|z)

= EqQuivalent to:

P(z|z) = P(zly, z)
P(y|z) = P(y|z, 2)

» Note: this does not necessarily mean that:

P(r,y) = P(x)P(y)



Marginalization

= Discrete case: P([E) — Z P('x? y)
Yy

= Continuous case: p(f)f) — /p(mﬁy)dy



Marginalization example
PX,Y) | xi X1 X1 X1 P(Y) |

P(X) 1/2 1/4 1/8 1/8 1
—_—




Expected value of a Random Variable
Discrete case: E[X] — Z ZE/EP(ZCE)

Continuous case:E'[X] — /ajP(X — {L‘)dﬂ?

The expected value is the weighted average of all values a random variable
can take on.

Expectation is a linear operator:

FlaX + bl =aFE|X] + b



Covariance of a Random Variable

» Measures the square expected deviation from the mean:

Cov[X| = E[X — E[X]]* = E[X?] — E[X]?



Estimation from Data

= Observations: X1, X9, ..., Xy € Rd

1
= Sample Mean: U = — E X
n =
1

= Sample Covariance:

2= —— 3 — )i — g




BadgerWorks Lectures
Topic: State Estimation — Reasoning with Bayes Law



The State Estimation problem

» We want fo estimate the world state x from:
= Sensor measurements z and

» Controls u

» We need to model the relationship between these random variables, i.e:

p(x|z) p(x’|x; )



Causal vs. Diagnostic Reasoning
P(X‘Z) ls diagnostic
P(Z‘X) Is causall

= Diagnostic reasoning is typically what we need.
» Often causal knowledge is easier to obtain.

= Bayes rule allows us to use causal knowledge in diagnostic reasoning.



Bayes rule

= Definition of conditional probability:

P(z,z) = P(x|z)P(z) = P(z|z)P(x)

= Bayes rule:

Observation likelihood Prior on world state
\, /
P P
plafs) = PEI2)P@)
P(z)

/

Prior on sensor observations



Normalization

Direct computation of P(z) can be difficult.

ldea: compute improper distribution, normalize afterwards.
St L(zlz) = P(z|z)P(z)
ster2. P(z) =) Pz,z) =) P(z|lz)P(z) =) L(z|z)

seers: P(x|z) = L(x|z)/P(2)



Normalization

= Direct computation of P(z) can be difficult.

» |dea: compute improper distribution, normalize afterwards.
= STEP 1 [(x|z) = P(z|x)P(x)
- ser2 P(z) =) P(z,2) =) P(zlz)P(x) = L(z|z)

- sers. P(x|z) = L(x|z)/P(z)



Example: Sensor Measurement

= Quadrotor seeks the Landing Zone
= The landing zone is marked with many bright lamps

= The quadrotor has a light sensor.




Example: Sensor Measurement

= Binary sensor Z o {b?"’l,ghtj b’}"l—ght}
= Binary world state X o {h()mej hO;TZe}

= Sensor model P(Z — b?"’zght X — hOzne) — 06
P(Z = bright| X = home) = 0.3
= Prior on world s’ro’reP(X — home) = 0.9

= Assume: robot observes light, i.e. Z — b?"@ght

= What is the probability P X p— hOmG‘Z — b?"’},ght) that

the robot is above the landihg zone.



Example: Sensor Measurement

= Sensor model: P(Z — brzght X = h()zne) — (.6
P(Z = bright| X = home) = 0.3

= Prior on world state: P(X — hOme) = 0.5

= Probability after observation (using Bayes):

P(X = home|Z = bright) =
P(bright|home) P(home)

P(bright|home) P(home) 4+ P(bright|home)P(home)
0.6 -0.5
= 0.67

0.6-0.5+0.3-0.5




Actions (Moftions)

» Offen the world is dynamic since
= Actions are carried out by the robot
= Actions are carried out by other agents

= Orsimply because time is passing and the world changes

= How can we incorporate actions?



Example actions

MAYV accelerates by changing the speed of its motors.

The ground robot moves due to it being on an inclined terrain.

Actions are never carried out with absolute certainty: leave a quadrotor
hover and see it drifting!

In contrast to measurements, actions generally increase the uncertainty of
the state estimate



Action Models

= To incorporate the outcome of an action u into the current estimate
(“belief”), we use the conditional pdf

p(z’ | u,x)

= This term specifies the probability that executing the action u in state x will
lead to state x’



Example: Take-Off
= acton: . € {takeoff }

= World state: 0 & {gI'OU_I]d’ air}

0.9 0.01




Integrating the Outcome of Actions

P(x' | u) = ZP " u, x)P(x)

» Discrete case:

=» Continuous case;

p(a' | u) = / p(' | u,2)p(z)dz



Example: Take-Off

= Prior belief on robot state: P(g; — ground) — 1.0
» Robot executes “take-off"” action

= Whatis the robot’s belief after one time step?

P(2' = ground) = Z P(2' = ground | u, z)P(x)

=P (2’ = ground | u, z = ground)P(z = ground)
+P(z' = ground | u, x = air) P(x = air)
=0.1-1.0+0.01-0.0=0.1



BadgerWorks Lectures
Topic: State Estimation — Bayes Filter



Markov Assumption

» Observations depend only on current state
P(Zt ‘330:753 Z1:t—15 Ul:t) — P(Zt‘c’ﬁt)
» Current state depends only on previous state and current action

P(fEt‘ajO:t;Zl:t;ul:t) — P(Zﬂt‘lﬂt—l;ut)



Markov Chain

= A Markov Chain is a stochastic process where, given the present state, the
past and the future states are independent.




Underlying Assumptions

= Static world
= |ndependent noise

= Perfect model, no approximation errors



Bayes Filter

= Given
= Sequence of observations and actions: th ’U,t

= Sensor model: P(Z ‘ Qj)
/
= Acfion model: P(,I' ‘.I'? U)
= Prior probability of the system state: P (aj)

= Desired
= Estimate of the state of the dynamic system: /]

» Posterior of the state is also called belief:

Bel(xy) = P(x¢|uq, z1, ..., ug, zt)



Bayes Filter Algorithm

= For each time step, do:

= Apply motion model:

Bel(x;) = Z P(x¢|zi_1, up) Bel(xi_1)

rt—1

Bel(z;) = nP(z/|x;)Bel(x;)

= 7 is a normalization factor to ensure that the probability is maximum 1.



Example: Localization
= Discrete state: [ & {1? 2’ e w} X {]_’ 2? cees h}
= Belief distribution can be represented as a grid

= This is also called a historigram filter

P(x)=1

P(x)=0




Example: Localization

= aciion: 1, € {north, east, south,west}

= Robot can move one cell in each time step

= Actions are not perfectly executed

+




Example: Localization

= Action
= Robot can move one cell in each time step
= Actions are not perfectly executed

= Example: move east

Ti—1 = I u=-cast | @

» 60% success rate, 10% to stay/move too far/ move one up/ move one down



Example: Localization

= Binary observation: 2 €& {mafr‘kefr‘? ma;fr‘ke?"}

= One (special) location has a marker

= Marker is sometimes also detected in neighboring cells




Example: Localization

» | et's start a simulation run...



Example: Localization

» =0
= Prior distribution (initial belief)

= Assume that we know the initial location (if not, we could initialize with a
uniform prior)




Example: Localization

» {=], U =eaqst, z=no-marker

= Bayes filter step 1: Apply motion model




Example: Localization

» {=], U =eaqst, z=no-marker

= Bayes filter step 2: Apply observation model




Example: Localization

» {=2, U =eaqst, z=zmarker

= Bayes filter step 1: Apply motion model




Example: Localization

» =2, U =east, z=marker
= Bayes filter step 2: Apply observation model

= Question: where is the robot?

B

ZEE




BadgerWorks Lectures
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Kalman Filter

= Bayes filter is a useful tool for state estimation.
= Histogram filter with grid representation is not very efficient.

= How can we represent the state more efficiently?



Kalman Filter

Bayes filter with contfinuous states
State represented with a normal distribution

Developed in the late 1950's. A cornerstone. Designed and first application:
estimate the trajectory of the Apollo missiles.

Kalman Filter is very efficient (only requires a few matrix operations per time
step).

Applications range from economics, weather forecasting, satellite
navigation to robotics and many more.



Kalman Filter

= Univariate distribution

| p(x)

within 1sd

< 68% af mass

J‘/ 99% of masgs within Bsd \’L
X

u-30 M-O

u+o u+30

Variance (squared
standard deviation)




Kalman Filter

= Multivariate normal distribution: X ~ N(M? E)
= Mean: U - Rn

= Covariance: E C Rnxm

= Probability density function:

p(X = X)lz N (x; u, 2)1:
ryras7a (= 1) "5 (o — )




Properties of Normal Distributions

= [inear transformation — remains Gaussian
X ~NuX),Y ~AX+B
=Y ~ N(Ap+B,AXA")

» |ntersection of two Gaussians — remains Gaussian

Xl ~ N(ula 21)7X2 NN(MZ; 22)

2 2 1 )

ST SM LIS SRS SRl Sy S

p(X1)p(Xs) = A (



Properties of Normal Distributions

= Linear transformation — remains Gaussian
X ~NuX),Y ~AX+B
=Y ~ N(Ap+B,AXA")

» |ntersection of two Gaussians — remains Gaussian

Xl ~ N(uljzl)a:XQ NN(M?) 22)

pXp(Xa) = (5 > 1)

ST SM LIS SRS SRl Sy S




Linear Process Model

Consider a time-discrete stochastic process (Markov chain)




Linear Process Model

= Consider a time-discrete stochastic process

= Represent the estimated state (belief) with a Gaussian

Xt N(Mta Et)



Linear Process Model

= Consider a time-discrete stochastic process

= Represent the estimated state (belief) with a Gaussian
Xt N (Mta Et)

= Assume that the system evolves linearly over time, then

Xt = AX¢ g



Linear Process Model

= Consider a time-discrete stochastic process

= Represent the estimated state (belief) with a Gaussian
Xt N (Mta Et)

» Assume that the system evolves linearly over time, then depends linearly on

the conftrols
x: = Ax¢—1 + Bw,



Linear Process Model

Consider a time-discrete stochastic process

Represent the estimated state (belief) with a Gaussian
Xt N ( ot Et)

Assume that the system evolves linearly over time, then depends linearly on
the controls, and has zero-mean, normally distributed process noise

Xt = Ax;1 + Bus + ¢
with €¢ ~~ N(Oa Q)



Linear Observations

= Further, assume we make observations that depend linearly on the state

i — CXt



Linear Observations

= Further, assume we make observations that depend linearly on the state and
that are perturbed zero-mean, normally distributed observation noise

i — CXt -+ 5,5
= With )y ~ ../\/'(0j R)



Kalman Filter

= Estimates the state x, of a discrete-time controlled process that is governed
by the linear stochastic difference equation

Xt = AX—1 + Bu; + ¢
= And (linear) measurements of the state
z; = CX; + 0y
= wih €, ~ N(0,Q)ons 0y ~ N(0,R)



Kalman Filter
state X € [R™

Confrols 11 & RZ
. k
Observations 7 & R

Process equation Xt — AXt_l —+ ]E?ut —+ €¢
nx

nxn

Measurement equation Zt — CXt _|_ 575

nxk



Kalman Filter

= |nitial belief is Gaussian

Bel(ﬂio) — N(XO; Ko, 20)
= Next state is also Gaussian (linear fransformation)

Xt ./\/'(Axt -+ Blltj Q)

= QObservations are also Gaussian

Ly N‘(Cxtj R)



Recall: Bayes Filter Algorithm

= For each step, do:

= Apply motion model

@(Xt) — /p(Xt‘Xt_hut)B€l(Xt_1)dXt_1

= Apply sensor model

Bel(x;) = np(z:|x:) Bel(x:)



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

@(Xﬁ) — / p(Xt‘Xt—lj ut) Bel(xt_l) dXt—l
— S—

N(xt;Axt—1+Bugt, Q) N (xt—150¢ 1,3, 4)



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply motion model

B@l(Xf) — / p(Xt‘Xt—h llt) Bf?l(Xt_l) dXt_l
S — N————’
N (x¢;Ax: _1+Buit,Q) N(Xt—15ﬁt—1¢2t_1)

— N(Xt; A;Uzt_—l -+ Buta AZAT T Q)
— N(Xt; ﬁ’tj Et)



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(xt) — 1] p(Zt‘Xt) B@l(Xf)
———— N —
N (zt;Cx¢,R) N (x¢;it,3t)

— N(Xh [t + Kt(zt — Cﬂ)? (I — Kt)C)Z_])
— N(‘/Et: Mt Zt)

= With K?f EtCT(CEtCT —|— R) (Kalman Gain)




From Bayes Filter to Kalman Filter

Blends between our previous estimate 4+ and the discrepancy between our
sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain.
And this depends on a formula based on the errors of sensing etc. In fact it
depends on the ratio between our uncertainty ¥ and the uncertainty of our

sensor observations R.

ﬁft -+ Kt(zt — Cﬁ/)

SN\

old mean Kalman
Gain



From Bayes Filter to Kalman Filter

= For each step, do:

= Apply sensor model

Bel(xt) — 1] p(Zt‘Xt) B@l(Xf)
———— N —
N (zt;Cx¢,R) N (x¢;it,3t)

— N(Xh [t + Kt(zt — Cﬂ)? (I — Kt)C)Z_])
— N(‘/Et: Mt Zt)

= With K?f EtCT(CEtCT —|— R) (Kalman Gain)




Kalman Filter Algorithm

= For each step, do:

= Apply motfion model (prediction step)

= Ap,_; + Buy
¥, =AZA' +Q

= Apply sensor model (correction step)

pe = iy + Ky(z, — Ciy)
Et — (I — KtC)z_Jt

= With Kt — itCT(CitCT —|— R)_l



Kalman Filter Algorithm

Prediction & Correction steps
= For each step, do: can happen in any order.

= Apply motion model (prediction step)

= Ap,_; + Buy
¥, =AZA' +Q

= Apply sensor model (correction step)

pe = iy + Ky(z, — Ciy)
Et — (I — KtC)z_Jt

= With Kt — itCT(CitCT —I— R)_l



Kalman Filter Algorithm

Prediction & Correction steps
can happen in any order.




Complexity

= Highly efficient: Polynomial in the measurement dimensionality k and state

dimensionality n
O(k2'376 4 7’2/2)

» Optimal for linear Gaussian systems

= But most robots are nonlinear! This is why in practice we use Extended Kalman
Filters and other approaches.



BadgerWorks Lectures
Topic: Extended Kalman Filter

Dr. Kostas Alexis (CSE)

These slides relied on the lectures from C. Stachniss, J. Sturm and the book “Probabilistic Robotics” from Thurn et al. as
well as the courses of C. Stachiniss



Kalman Filter Assumpftions

» Gaussian distributions and noise

» | inear motfion and observation model

= What if this is not the case?

vy = A1 + Byuy + €
it = Ot.CCt —+ 51&



Linearity Assumption Revisited

6| 6
plyi= Miy;ap+h,a"e®) m— =g X+ D
X tean of piy) = tdean p
o
4
*
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6| l
P = NE %, o)
J= Mean of pix)
2 |
0




Nonlinear Function

6 6
Py — Function gx)
— Gaussian of piy) = Meanp
4l % Mean af piy) 4t O o
_ 2
0 T 0
-2 -2
T 4 +
0 0204 06 0.8 0 0.5
6 p(x)
= Mean p
2|
0 L




Nonlinear Dynamical Systems

» Real-life robots are mostly nonlinear systems.

= The motion equations are expressed as nonlinear differential (or difference) equations:

It = g(utgil?t—l)

= Also leading to a nonlinear observation function:

2 = h(xy)



Taylor Expansion

= Solution: approximate via linearization of both functions

= Motion Function:

Og(fb—1,u
g(xi_1,uy) ~ g1, ur) g(g;tll )

= g(pt—1,ur) + Ge(xr-1 — pr—1)

(th—l — Mt—l)

= Observation Function:




Reminder: Jacobian Matrix

= |t is a non-square matrix mxn in general

[ 9(z) \

g2()

\ gm.(m) )

» Given a vector-valued function:

g(x) =

=» The Jacobian matrix is defined as:

/ 991 9g1 991 \
65[31 85132 e 8:13n
dg2 9g2 9g2
Ga: _ 8?31 32.?32 T afn
\ Ogm Ogm Ogm )
o0x1 Oxo T oz,



Reminder: Jacobian Matrix

= |t is the orientation of the tangent plane to the vector-valued function at a given point

Courtesy: K. Arras

= Generalizes the gradient of a scaled-valued function.



Extended Kalman Filter

= For each time step, do:

= Apply Motion Model:

[t = Q(Mt—la ut)

S, = GYG +Q with Gy =

= Apply Sensor Model:

pe = [y + K (2 —

h(fit))

Y, = (I — K,H)%,

where Kt — ithT(HfithT -+ R)

-1 and Ht —_




Linearity Assumption Revisited
61 6
plyi= M{y;ap+h,ate®) m— =g+ D
X tean of ply)
o
4
.
3
2
1 - ’ +
0 05 1 156 0 0.5 1
6| |
Pl = N( %, o7
J= Mean of px)
Qz-
0




Nonlinear Function

6 6
[<I8%)] = Function g
—— Gaussian of piy) = Meanp
48 X Mean of p{y) 4 ¢ O ol

-2 2t
4L 4 + -
0 0204 0.6 0.8 0 0.5 1
J i)
= tean p
2|
0 =




EKF Linearization (1)

6 6
piy) — Function g(x)
— Gaussian of p(y) = Taylor approx.
4 || — EFK Gaussian 4 d= Meanp
O sw
2
%
0 "0
-2 -2
4 -4 +
0 0204 06 0.8 0 0.5
61 P
= Meanp
* ol
2t




EKF Linearization (2)

6

J

ply)
— Gaussian of p{y)

— EFK Gaussian

0.5

¥=g(x)

6 .

4t

— Function gx)
— Taylor approx.
= Meanp

QO uw

p(x)
= Neanp




EKF Linearization (3)

6

4

P(y)

— Gaussian of p(y)

—— EFK Gaussian
0 05 1 15

¥=00x)

— Function g(x)
= Taylor approx.
+ Meanp

Q s

0 0.5

P(x)
= heanp




Linearized Motion Model

» The linearized model leads to:

_1
2

p(ay | ug, 1) =~ det (2w Ry)

1

CXP ( 9 (fEt — g(utaﬂt—l) — G (mt—l — Mt—l))T

Rt_l (ﬂft — Q(Uta Mt—l) — Gy (iﬂt—l — ﬂt—lp)

-

linearized model

- Rt describes the noise of the motion.



Linearized Observation Model

» The linearized model leads to:

p(zt | Cl?t) = det (271'@13)

exp (= 5 (= hie) — H, (z, — )"

Q7' (2 — fb(ﬂt) — Hy (24 — ﬂtl))

linearized model

1
2

o Qt describes the noise of the motion.



EKF Algorithm

1:

Extended _Kalman filter(u; 1, > 1, us, 2¢):

e = g(ug, pe—1)
Et — Gt Et—l G? + Rt

Kt — it H;T(Ht it Hg —|— Qt)_l

we = py + K2 —ﬁ!@ﬁ))
Et — (I— Kt Ht) Et
return s, 2

AtHGt

CtHHt

KF vs EKF




EKF Summary

Extension of the Kalman Filter.

One way to deal with nonlinearities.

Performs local linearizations.

Works well in practice for moderate nonlinearifies.

Large uncertainty leads to increased approximation error.



EKF Discussion




EKF Discussion

IMU + Compass GPS




EKF Discussion




FInd out more

= Thrun et al.: "Probabilistic Robotics”, Chapter 3
= Schdn and Lindsten: “Manipulating the Multivariate Gaussian Density”

» “A New Extension of the Kalman Filter to Nonlinear Systems” by Julier and
Uhlmann, 1995

» nhifp://home.wlu.edu/~levys/kalman tutorial/

» https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

» Nhitp://www.autonomousroboislab.com/the-kalman-filter.ntml

» hitp://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullV
ersion.pdf

» Nhifp://www.cs.unc.edu/~welch/kalman/

» nhitp://home.wlu.edu/~levys/kalman tutorial/

» Nhitps://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

= Nhitp://www.autonomousrobotslab.com/literature-and-links.nhtm|



http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.autonomousrobotslab.com/the-kalman-filter.html
http://aerostudents.com/files/probabilityAndStatistics/probabilityTheoryFullVersion.pdf
http://www.cs.unc.edu/~welch/kalman/
http://home.wlu.edu/~levys/kalman_tutorial/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://www.autonomousrobotslab.com/literature-and-links.html

Code Examples and Tasks

= KF, EKF, UKF

= Kalman Filter: https://github.com/unr-
arl/drones demystified/tree/master/matlab/state-
estimation/kalman-filter



https://github.com/unr-arl/drones_demystified/tree/master/matlab/state-estimation/kalman-filter
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