BadgerWorks

Topic: Collaborative Visual Area Coverage

Dr. Kostas Alexis (CSE)

Distributed Multi-Robot Coverage

Sung Lee, Yancy Diaz-Mercado, and Magnus Egerstedt GRITS Lab, Georgia Tech March 2014

Collaborative Visual Area Coverage

Visual Area Coverage using a team of Aerial Robots.

- 2D Plane to be covered.
- Nadir-looking camera

Collaborative Visual Area Coverage

Visual Area Coverage using a team of Aerial Robots.

- Distributed control law.
- Account for the quality of observation.

- Environment
- Aerial Robots Team
- Sensing Performance

- Environment
- Ω ⊂ R² be a compact convex region under surveillance.
- Aerial Robots Team
- Sensing Performance

- Environment
 - $ightharpoonup \Omega \subset \mathbb{R}^2$ be a compact convex region under surveillance.
- Aerial Robots Team
- Sensing Performance

 $ightharpoonup \Omega \subset \mathbb{R}^2$ be a compact convex region under surveillance.

Aerial Robots Team

- $X_i = [x_i, y_i, z_i]^T$, $i \in I_n$, $I_n = \{1, ..., n\}$ representing the position of each robot.
- $\mathbf{p} = [x_i, y_i]^T$, $q_i \in \Omega$ representing the projection to surveillance space.
- $z_i \in [z_i^{min}, z_i^{max}]$ defining minima and maxima for the altitude of every robot
- lacktriangle Kinodynamic Model ([$u_{i,q},u_{i,z}$] the control input of thrust/direction for each robot)

$$\dot{q}_i = u_{i,q}, \quad q_i \in \Omega, \ u_{i,q} \in \mathbb{R}^2,
\dot{z}_i = u_{i,z}, \quad z_i \in [z_i^{\min}, z_i^{\max}], \ u_{i,z} \in \mathbb{R}.$$

Sensing Performance

Coverage Quality

- $f_i(q): \mathbb{R}^2 \to [0,1]$ coverage quality function that depends on X_i
- It can be considered that as the altitude increases, the quality reduces.
- For each point $q \in \Omega$ an importance weight is assigned via the space density function $\phi: \Omega \to \mathbb{R}^+$ encapsulating any a priori information regarding the region of interest.
- Therefore, the Coverage Quality objective is:

$$\mathscr{H} \stackrel{\triangle}{=} \int_{\Omega} \max_{i \in I_n} f_i(q) \ \phi(q) \ dq.$$

For simplicity, it is now assumed that $\phi(q)=1, \forall q\in\Omega$

- lacktriangle Only the subset of Ω sensed by the nodes is partitioned.
- Each node is assigned to a cell:

$$W_i \stackrel{\triangle}{=} \{ q \in \Omega \colon f_i(q) \ge f_j(q), \ j \ne i \}$$

with the equality holding only at the boundary ∂W_i so that the cells W_i comprise a complete tessellation of the sensed region.

 \blacksquare Neighbors N_i of node i

$$N_i \stackrel{\triangle}{=} \left\{ j \neq i \colon C_j^s \cap C_i^s \neq \emptyset \right\}$$

- The neighbors of node i are those nodes that sense at least a part of the region that node i senses.
 - Only the nodes in N_i need to be considered when creating W_i

The aforementioned is a complete tessellation of the sensed region

$$\bigcup_{i\in I_n} C_i^s$$

Proof. But not necessarily a complete tessellation of Ω . We denote the residual space:

$$\mathscr{O} = \Omega \setminus \bigcup_{i \in I_n} W_i$$

- Furthermore, it is noted that the resulting cells W_i are compact but not necessarily convex.
 - \blacksquare It is also possible that a cell W_i consists of multiple disjoint regions (e.g. cell 1)

Network's Coverage Performance

$$\mathcal{H} = \sum_{i \in I_n} \int_{W_i} f_i(q) \ \phi(q) \ dq$$

- Given:
 - Kinodynamics model
 - Sensing performance
 - Coverage criterion
- A gradient based control law is designed and utilizes the partitioning of space and ensures monotonous increase of the covered area.

$$u_{i,q} = \alpha_{i,q} \left[\int_{\partial W_i \cap \partial \mathcal{O}} n_i \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial q_i} \ dq + \sum_{j \neq i} \int_{\partial W_i \cap \partial \mathcal{O}} v_i^i \ n_i \ (f_i(q) - f_j(q)) \ dq \right]$$

$$u_{i,z} = \alpha_{i,z} \left[\int_{\partial W_i \cap \partial \mathcal{O}} \tan(a) \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial z_i} \ dq + \sum_{j \neq i} \int_{\partial W_i \cap \partial W_j} v_i^i \cdot n_i \ (f_i(q) - f_j(q)) \ dq \right]$$

 A gradient based control law is designed and utilizes the partitioning of space and ensures monotonous increase of the covered area.

$$u_{i,q} = \alpha_{i,q} \left[\int_{\partial W_i \cap \partial \mathscr{O}} n_i \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial q_i} \ dq + \sum_{j \neq i} \int_{\partial W_i \cap \partial \mathscr{O}} v_i^i \ n_i \ (f_i(q) - f_j(q)) \ dq \right]$$

$$u_{i,z} = \alpha_{i,z} \left[\int_{\partial W_i \cap \partial \mathscr{O}} \tan(a) \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial z_i} \ dq + \sum_{j \neq i} \int_{\partial W_i \cap \partial W_i} v_i^i \cdot n_i \ (f_i(q) - f_j(q)) \ dq \right]$$

- $lacktriangleq a_{i,q}$, $a_{i,z}$ are positive constants and n_i the outward pointing normal vector of W_i
- This control law maximizes the performance criterion monotonically

 A gradient based control law is designed and utilizes the partitioning of space and ensures monotonous increase of the covered area.

$$u_{i,q} = \alpha_{i,q} \left[\int_{\partial W_{i} \cap \partial \mathcal{O}} n_{i} f_{i}(q) dq + \int_{W_{i}} \frac{\partial f_{i}(q)}{\partial q_{i}} dq + v_{i}^{i}(q) = \left[\int_{\partial W_{i}} \frac{\partial x}{\partial y_{i}} \frac{\partial x}{\partial y_{i}} \right] = \mathbb{I}_{2} \right]$$

$$\sum_{j \neq i} \int_{\partial W_{i} \cap \partial W_{j}} v_{i}^{i} n_{i} (f_{i}(q) - f_{j}(q)) dq$$

$$u_{i,z} = \alpha_{i,z} \left[\int_{\partial W_{i} \cap \partial \mathcal{O}} \tan(a) f_{i}(q) dq + \int_{W_{i}} \frac{\partial f_{i}(q)}{\partial z_{i}} dq + v_{i}^{i}(q) \right]$$

$$\sum_{j \neq i} \int_{\partial W_{i} \cap \partial W_{i}} v_{i}^{i} \cdot n_{i} (f_{i}(q) - f_{j}(q)) dq$$

$$v_{i}^{i}(q) = \left[\int_{\partial X_{i}} \frac{\partial x}{\partial z_{i}} \right] = \left[tan(a) cos(k) \\ tan(a) sin(k) \right]$$

- lacksquare $a_{i,q}$, $a_{i,z}$ are positive constants and n_i the outward pointing normal vector of W_i
- This control law maximizes the performance criterion monotonically

- Proof:
 - lacktriangle Evaluate time derivative of optimization criterion ${\mathscr H}$

$$\frac{d\mathcal{H}}{dt} = \sum_{i \in I_n} \left[\frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \frac{\partial \mathcal{H}}{\partial z_i} \dot{z}_i \right]$$

The usage of a gradient based control law in the form

$$u_{i,q} = \alpha_{i,q} \frac{\partial \mathcal{H}}{\partial q_i}, \quad u_{i,z} = \alpha_{i,z} \frac{\partial \mathcal{H}}{\partial z_i}$$

lacktriangle Will result in a monotonous increase in ${\mathscr H}$

- Proof:
 - Applying Leibnitz integral rule

$$\frac{\partial \mathcal{H}}{\partial q_{i}} = \sum_{i \in I_{n}} \left[\int_{\partial W_{i}} v_{i}^{i} n_{i} f_{i}(q) dq + \int_{W_{i}} \frac{\partial f_{i}(q)}{\partial q_{i}} dq \right]$$

$$= \int_{\partial W_{i}} v_{i}^{i} n_{i} f_{i}(q) dq + \int_{W_{i}} \frac{\partial f_{i}(q)}{\partial q_{i}} dq + \int_{W_{i}} \int_{\partial W_{j}} v_{j}^{i} n_{j} f_{j}(q) dq + \int_{W_{j}} \frac{\partial f_{j}(q)}{\partial q_{i}} dq \right]$$

$$\sum_{j \neq i} \left[\int_{\partial W_{j}} v_{j}^{i} n_{j} f_{j}(q) dq + \int_{W_{j}} \frac{\partial f_{j}(q)}{\partial q_{i}} dq \right]$$

$$v_j^i(q) \stackrel{\triangle}{=} \frac{\partial q}{\partial q_i}, \quad q \in \partial W_j, \ i, j \in I_n$$

- Proof:
 - Since:

$$\frac{\partial f_j(q)}{\partial q_i} = 0$$

• we obtain:

$$\frac{\partial \mathcal{H}}{\partial q_i} = \int_{\partial W_i} v_i^i n_i f_i(q) dq + \int_{W_i} \frac{\partial f_i(q)}{\partial q_i} dq + \sum_{j \neq i} \int_{\partial W_j} v_j^i n_j f_j(q) dq$$

- The three terms indicate how a movement of node i affects the boundary of its cell and the boundaries of the cells of other nodes.
- Only the cells W_j which have a common boundary with W_i will be affected therefore giving rise to a distributed control law.

- Proof:
 - The boundary ∂W_i can be decomposed in disjoint sets as

$$\partial W_i = \{\partial W_i \cap \partial \Omega\} \cup \{\partial W_i \cap \partial \mathscr{O}\} \cup \{\bigcup_{j \neq i} (\partial W_i \cap \partial W_j)\}$$

These sets represent the parts of ∂W_i that lie on the boundary of Ω , the boundary of the node's sensing region and the parts that are common between the boundary of the cell of node i and those of other nodes.

 ∂W_i decomposition into disjoint sets.

- Proof:
 - ▶ At $q \in \partial \Omega$ it holds that $v_i^i = 0_{2x2}$ since we assume the region of interest to be static.
 - Additionally, since only the common boundary $\partial W_j \cap \partial W_i$ of node i with another node j is affected by the movement of node i, $\frac{\partial \mathscr{H}}{\partial q_i}$ can be simplified as

$$\frac{\partial \mathcal{H}}{\partial q_{i}} = \int_{\partial W_{i} \cap \partial \mathcal{O}} v_{i}^{i} n_{i} f_{i}(q) dq + \int_{W_{i}} \frac{\partial f_{i}(q)}{\partial q_{i}} dq + \sum_{j \neq i} \int_{\partial W_{i} \cap \partial W_{j}} v_{i}^{i} n_{i} f_{i}(q) dq + \sum_{j \neq i} \int_{\partial W_{j} \cap \partial W_{i}} v_{j}^{i} n_{j} f_{j}(q) dq.$$

Proof:

- Because the boundary $\partial W_i \cap \partial W_j$ is common among nodes i and j, it holds true that $v_j^i = v_i^i$ when evaluated over it and that $n_j = -n_i$.
- Finally, the sums and the integrals within then can be combined, producing the final form of the planar control law

$$\frac{\partial \mathcal{H}}{\partial q_i} = \int_{\partial W_i \cap \partial \mathcal{O}} n_i \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial q_i} \ dq + \sum_{j \neq i} \int_{\partial W_j \cap \partial W_i} v_i^i \ n_i \ (f_i(q) - f_j(q)) \ dq.$$

Similarly, by using the same ∂W_i decomposition and defining $v_j^i(q) \stackrel{\triangle}{=} \frac{\partial q}{\partial z_i}, \ q \in \partial W_j, \ i, j \in I_n$, the altitude control is:

- Proof:
 - Similarly, by using the same ∂W_i decomposition and defining $v_j^i(q) \stackrel{\triangle}{=} \frac{\partial q}{\partial z_i}, \ q \in \partial W_j, \ i, j \in I_n$, the altitude control is:

$$\frac{\partial \mathcal{H}}{\partial z_i} = \int_{\partial W_i \cap \partial \mathcal{O}} \tan(a) \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial z_i} \ dq + \sum_{j \neq i} \int_{\partial W_j \cap \partial W_i} \mathbf{v}_i^i \cdot n_i \ (f_i(q) - f_j(q)) \ dq$$

- The cell W_i of node i is affected by its neighbors N_i therefore resulting in a distributed control law.
- The finding of the neighbors N_i depends on their coordinates X_j , $j \in N_i$.
- The computation of the N_i set demands node i to be able to communicate with all nodes within a sphere centered around X_i and radius r_i^c

$$r_i^c = \max \left\{ 2z_i \ \tan a, \ \left(z_i + z^{\min} \right)^2 \tan^2 a + \left(z_- z^{\min} \right)^2, \right.$$

 $\left. \left(z_i + z^{\max} \right)^2 \tan^2 a + \left(z_- z^{\max} \right)^2 \right\}$

- Stable Altitude:
 - The altitude control law $u_{i,z}$ moves each robot towards an altitude in which $u_{i,z} = 0$ which corresponds to an equilibrium point for that particular node.
 - This is called the "stable altitude? And it is the solution wrt z_i of the equation:

$$u_{i,z} = 0 \Rightarrow$$

$$\int_{\partial W_i \cap \partial \mathscr{O}} \tan(a) \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial z_i} \ dq +$$

$$\sum_{j \neq i} \int_{\partial W_i \cap \partial W_j} \mathbf{v}_i^i \cdot n_i \ (f_i(q) - f_j(q)) \ dq = 0.$$

- Both integrals over ∂W_i are non-negative, whereas the integral over W_i is negative since coverage quality decreases as altitude increases.
- The stable altitude is not common among nodes as it depends on one's neighbors N_i and is not constant over time since the neighbors change over time.

- Optimal Altitude:
 - lacktriangle We call optimal altitude z^{opt} the altitude a node would reach if:
 - It had no neighbors and
 - No part of W_i on $\partial\Omega$.

$$\int_{\partial C_i^s} \tan(a) \ f_i(q) \ dq + \int_{W_i} \frac{\partial f_i(q)}{\partial z_i} \ dq = 0$$

lacktriangle We denote the sensing region of a node i at z^{opt} as $\mathcal{C}^s_{i,opt}$ and the value of the criterion when all nodes are located at z^{opt} as \mathscr{H}_{opt}

Coverage Quality Functions

- The function f_i , $i \in I_n$ is required to have the following properties:
 - \bullet $f_i(q) = 0, \forall q \notin C_i^s$

 - $f_i(q)$ is first order differentiable with respect to q_i and z_i , or $\frac{\partial f_i(q)}{\partial q_i}$ and $\frac{\partial f_i(q)}{\partial z_i}$ exist within C_i^s
 - $f_i(q)$ is symmetric around the z-axis
 - $f_i(q)$ is a decreasing function of z_i
 - $f_i(q)$ is a non-increasing function of $||q q_i||$
 - $f_i(q_i) = 1$ when $z_i = z^{min}$ and $f_i(q_i) = 0$ when $z_i = z^{max}$

Coverage Quality Functions

- Specific Case: Decreasing Coverage Quality as distance increases
 - Coverage quality of a point $q \in C_i^s$ is maximum directly below the node and decreases as $||q q_i||$ increases.
 - One such function is an inverted paraboloid whose maximum value depends on z_i and could be defined as

$$f_i^p(q) = \begin{cases} \left[1 - \frac{1 - b}{[z_i \tan(a)]^2} \left[(x - x_i)^2 + (y - y_i)^2 \right] \right] f_i^u, & q \in C_i^s \\ 0, & q \notin C_i^s \end{cases}$$

where $b \in (0,1)$ is the coverage quality on ∂C_i^s as a percentage of the coverage quality on q_i and f_i^u is the uniform coverage quality function defined previously and is used to set the maximum value of the paraboloid.

Simulation Example

Applications in DDD-Robotics

- Nuclearized Robotics: Rapid search for illicit nuclear radiation source detection
 - Possibly change the performance function.
 - More difficult problem because no prior knowledge of source location.
 - Can be approached rather exhaustively with a small "coverage" radius.
- Search and Rescue Robotics: Rapid surveying of earthquake zone
- Security Robotics: Surveillance in remote areas
 - Critical aspect to account for updates of the environment through re-calculating the weights over the plane of coverage.

Definition of Semester-Long Project Goals

Nuclearized Robotics

- Task 1: Nuclear Source Localization exploiting Multi-Detector Information and Visual/Depth Cues
- Task 2: RotorS-Nuclearized Robotics

Multi-Robot Coverage

- Task 1: Radiation Field Estimation
- Task 2: Multi-Robot Area Coverage in 2D and 3D

Rapid Remote Access in DVE Environments

- Task 1: Ground Rover Platform for Remote Access
- Task 2: DVE SLAM onboard a Ground and Aerial Robotic Platform

Find out more

- Cortes, J., Martinez, S., Karatas, T. and Bullo, F., 2004. Coverage control for mobile sensing networks. IEEE Transactions on robotics and Automation, 20(2), pp.243-255.
- Bullo, F., Cortes, J. and Martinez, S., 2009. Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton University Press.
- Papatheodorou, S. and Tzes, A., 2017, December. Cooperative visual convex area coverage using a tessellation-free strategy. In Decision and Control (CDC), 2017 IEEE 56th Annual Conference on (pp. 4662-4667). IEEE.
- McNew, J.M., Klavins, E. and Egerstedt, M., 2007, April. Solving coverage problems with embedded graph grammars. In International Workshop on Hybrid Systems: Computation and Control (pp. 413-427). Springer, Berlin, Heidelberg.
- Schwager, M., Rus, D. and Slotine, J.J., 2009. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3), pp.357-375.

