
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Object-Oriented Concepts



Object-Oriented Solutions

• Functions & methods implement algorithms

• Algorithm

• A step-by-step recipe for performing a task within a finite period of time

• Algorithms operate on a collection of data

• Create a good set of modules

• Modules must store, move, and alter data

• Modules communicate with one another

• Organize your data collection to facilitate operations on the data



Object-Oriented Analysis

• Process to develop

• An understanding of the problem

• The requirements of a solution

• What a solution must be and do

• Not how to design or implement it

• Generates an accurate understanding of what end users will expect the solution 
to be and do

• Think about the problem

• Not how to solve it

• Objects can represent

• Real-world objects

• Software systems

• Ideas



Object-Oriented Analysis

• Process to develop

• An understanding of the problem

• The requirements of a solution

• What a solution must be and do

• Not how to design or implement it

• Generates an accurate understanding of what end users will expect the solution 
to be and do

• Think about the problem

• Not how to solve it

• Objects can represent

• Real-world objects

• Software systems

• Ideas

Expresses an understanding of the problem and the requirements of 

a solution in terms of objects within the problem domain. 



Object-Oriented Design

• Expresses an understanding of a solution that fulfills the requirements discovered 
during OOA

• Describes a solution in terms of

• Software objects

• Collaborations of these objects with one another



Object-Oriented Design

• Design Collaborations Among Objects

• Objects collaborate when they send messages

• Call each other’s methods

• Collaborations should be meaningful and minimal

• Design creates models of a solution

• Some emphasize interactions among objects

• methods

• Others emphasize relationships among objects

• “is a” and “has a” relationships



Object-Oriented Design

• Cohesion

• Degree to which methods in a class operate on data within the class

• High cohesion (good)

• Methods only operate on class data

• Easy to reuse in other software projects

• Easy to revise or correct

• Robust:

• Less likely to be affected by change

• Performs well under unsual conditions

• A person with low cohesion has “too many irons in the fire”



Object-Oriented Design

• Coupling

• Degree to which a class depends on other classes

• Modules with low coupling are independent of one another

• Low coupling (good)

• Easier to change

• Change to one module won’t affect another

• Easier to understand

• Easier to reuse

• Has increased cohesion

• Coupling cannot be (and should not) be eliminated entirely
• Objects must collaborate

• Class diagrams show dependencies among classes, hence coupling



Object-Oriented Design

• Minimal and complete interfaces

• A class interface declares publicly accessible methods (and data)

• Describes only way for programmers to interact with the class

• Classes should be easy to understand, and so have few methods

• Desire to provide power is at odds with this goal

• Complete interface

• Provides methods for any reasonable 
task consistent with the responsibilities 
of the class

• Important that an interface is complete

• Minimal interface

• Provides only essential methods

• Classes with minimal interfaces are 
easier to understand, use, and 
maintain

• Less important than completeness



Object-Oriented Design

• Signature

• Programmer’s interface for a method or function

• Name

• How to refer to the abstracted code

• Arguments (number, order, type)

• What is sent to the method

• Should not modify parameters (ideal world)

• Qualifiers (const)

• Return Type

• How code communicates results back to caller

• Should return single value (ideal world)



Object-Oriented Programming

• Object-oriented languages

• Enable us to build classes objects

• A class combines

• Attributes (characteristics) of objects

• Typically data

• Called data members

• Behaviors (operations)

• Typically operate on the data

• Called methods or member functions



Object-Oriented Programming

• Encapsulation

• Objects combine data and operations

• Hides inner details

• Inheritance 

• Classes can inherit properties from other classes

• Existing classes can be reused

• Polymorphism

• Objects can determine appropriate operations at execution time

• In C++ this requires pointers



Abstraction

• Separates the purpose of a module from its implementation

• Specifications for each module are written before implementation

• Specifications are in the C++ header file

• Functional abstraction

• Separates the purpose of a function from its implementation

• C++ function prototypes (headers)

• Data abstraction

• Focuses on the operations of data, not on the implementation of the operations

• C++ structures



Abstraction

• Abstract data type (ADT)

• A collection of data and operations on that data

• ADT operations can be used without knowing their implementations or how data is 
stored

• Classes

• Data Structure

• A construct that within a programming language used to store a collection of data

• An implementation of an ADT



Information Hiding

• Hide details within a module

• Ensure that no other module can tamper with these hidden details

• Public view of a module

• Described by its specifications

• Private view of a module

• Implementation details that the specifications should not describe



Communicate through a slit in the wall



Isolate data structure from program using it



Thank you


