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2-3 Trees

• General Search Tree

• Interior nodes are either 2-nodes or 3-nodes

• 2-node has one data item and two children

• 3-node has two data items and three children
• Simple implementations may use 3-nodes for both

• Are never taller than minimum-height binary tree

• A 2-3 tree with n nodes never has height 
greater than log2(𝑛 + 1)
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A Balanced Binary Search Tree – Height = 4
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Traversing 2-3 Trees

• To traverse a 2-3 Tree
• Perform the analogue of an in-order traversal

• Leftmost subtree,

• Left value,

• Center subtree,

• Right value,

• Rightmost subtree

• Searching a 2-3 tree is as efficient as
searching the shorted binary tree (with
the same values)

• 𝑂(log2𝑛)
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• To insert an item with key k into a 2-3 tree
• Locate the leaf at which the search for k would terminate
• Insert the new item k into the leaf

• If the leaf now contains only two items – done

• If the leaf now contains three items, split the leaf into two nodes and move the

middle value into parent
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• Accommodate the node’s children

• When the root contains three items
• Split the root into two nodes

• Create a new root node

• Tree grows in height
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• Removing values from 2-3 trees
• Always remove from a leaf

• Values (and children) will be redistributed

• Nodes can be merged

• Only root node is deleted
• And only if it is empty (contains no values)
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Thank you


