CS302 - Data Structures using C++

Topic: Balanced Search Trees

Kostas Alexis

Balanced Search Trees

- Height of binary search tree
- Sensitive to order of additions and removals
- Various search trees can retain balance
- Despite additions and removals

Balanced Search Trees

The tallest and shortest binary search trees containing the same data

AVL Trees

- An AVL (Adelson-Velskii and Landis) tree
- A balanced binary search tree
- Maintains its height close to the minimum
- Rotations restore the balance

AVL Trees

An unbalanced binary search tree

AVL Trees

Correcting an imbalance in an AVL tree due to an addition by using a single rotation to the left
(a) The addition of 60 to an AVL tree destroys its balance

(b) A single left rotation restores the tree's balance

AVL Trees

[Continued]
(c) The general case for a single left rotation in an AVL tree whose height decreases

After rotation

AVL Trees

A single rotation to the left that does not affect the height of an AVL tree
(a) Unbalanced

(b) After a single left rotation that restores the tree's balance

AVL Trees

[Continued]
(c) The general case for a single left rotation in an AVL tree whose height is unchanged

AVL Trees

A double rotation that decreases the height of an AVL tree
(a) Before the rotation

(b) After a left rotation

(c) After the right rotation

AVL Trees

[Continued]

2-3 Trees
A 2-3 tree of height 3

2-3 Trees

Nodes in a 2-3 tree

2-3 Trees

A 2-3 tree

2-3 Trees

A header file for a class of nodes for a 2-3 tree

```
/** A class of nodes for a link-based 2-3 tree.
    @file TriNode.h */
#ifndef TRI_NODE_
#define TRI_NODE_
template<class ItemType>
class TriNode
{
private:
    ItemType smallItem; // Data portion
    ItemType largeItem;
    // Data portion
    std::shared_ptr<TriNode<ItemType>> leftChildPtr; // Left-child pointer
    std::shared_ptr<TriNode<ItemType>> midChildPtr; // Middle-child pointer
    std::shared_ptr<TriNode<ItemType>> rightChildPtr; // Right-child pointer
public:
    TriNode();
```


2-3 Trees

[Continued]


```
    bool isLeaf() const;
    bool isTwoNode() const;
    bool isThreeNode() const;
    ItemType getSmal1Item() const;
    ItemType getLargeItem() const;
    void setSmal1Item(const ItemType& anItem);
    void setLargeItem(const ItemType& anItem);
    auto getLeftChildPtr() const;
    auto getMidChildPtr() const;
    auto getRightChildPtr() const;
    void setLeftChildPtr(std::shared_ptr<TriNode<ItemType>> leftPtr);
    void setMidChildPtr(std::shared_ptr<TriNode<ItemType>> midPtr)
    void setRightChildPtr(std::shared_ptr<TriNode<ItemType>> rightPtr);
}; // end TriNode
#include "TriNode.cpp"
#endif
```


Traversing a 2-3 Tree

Performing the analogue of an inorder traversal on a binary tree:

```
| / Traverses a nonempty 2-3 tree in sorted order:
inorder(23Tree: TwoThreeTree): void
{
    if (23Tree's root noder is a leaf)
        Visit the data item(s)
    else if (r has two data items)
    {
        inorder(left subtree of 23Tree's root)
        Visit the first data item
        inorder (middle subtree of 23Tree's root)
        Visit the second data item
        inorder (right subtree of 23Tree's root)
    }
    else // r has one data item
    {
        inorder(left subtree of 23Tree's root)
        Visit the data item
        inorder(right subtree of 23Tree's root)
    }
}
```


Searching a 2-3 Tree

Retrieval operation for a 2-3 tree

```
    / Locates the value target in a nonempty 2-3 tree. Returns either the located
    | / entry or throws an exception if such a node is not found.
    findItem(23Tree: TwoThreeTree, target: ItemType): ItemType
{
    if (target is in 23Tree's root noder)
    { |/ The data item has been found
        treeItem = the data portion of r
        return treeItem /| Success
    }
    else if (r is a leaf)
        throw NotFoundException // Failure
    |/ Else search the appropriate subtree
    else if (r has two data items)
    {
```


Searching a 2-3 Tree

Retrieval operation for a 2-3 tree


```
    else if (r has two data items)
    {
        if (target < smaller data item in r)
                return findItem(r's left subtree, target)
        else if (target < larger data item in r)
                return findItem(r's middle subtree, target)
        else
                return findItem(r's right subtree, target)
    }
    else // r has one data item
    {
        if (target < r's data item)
                return findItem(r's left subtree, target)
        else
            return findItem(r's right subtree, target)
    }
}
```


Searching a 2-3 Tree

- Search of a 2-3 and shortest binary search tree approximately same efficiency
- A binary search tree with n nodes cannot be shorter than $\log _{2}(n+1)$
- A 2-3 tree with n nodes cannot be taller than $\log _{2}(n+1)$
- Node in a 2-3 tree has at most two data items
- Searching 2-3 tree is $O(\log n)$

Searching a 2-3 Tree

A balanced binary search tree \& a 2-3 tree

(b) A 2-3 tree

Searching a 2-3 Tree

The trees shown before after adding the values 39 down to 32

Adding Data to a 2-3 Tree
After inserting 39 into the tree in previous slide

Adding Data to a 2-3 Tree

The steps for adding 38 to the tree in previous figure

(a) The located node has no room

(b) The node splits and 39 moves up

(c) The tree after the addition

Adding Data to a 2-3 Tree

After adding 37 to the tree in Figure

Adding Data to a 2-3 Tree

The steps for adding 36 to the tree in Figure

(a) The located node has no room, so 37 must move up

(b) After the node splits, its parent has no room for 37

(c) The node splits and 37 moves up

Adding Data to a 2-3 Tree

The steps for adding 36 to the tree in Figure

(b) After the node splits, its parent has no room for 37

bubbles up

Adding Data to a 2-3 Tree

[Continued]
(d) The tree after the addition

Adding Data to a 2-3 Tree (6ot11)

The tree after the adding 35,34 , and 33 to the tree in Figure

Adding Data to a 2-3 Tree

Splitting a leaf in a 2-3 tree in general and in a specific example

Adding Data to a 2-3 Tree

[Continued]
(b) The leaf is a right child

Adding Data to a 2-3 Tree

Splitting an internal node in a 2-3 tree in general and in a specific example

Adding Data to a 2-3 Tree

[Continued]
(b) The node is a right child

Adding Data to a 2-3 Tree

Splitting the root of a 2-3 tree general and in a specific example

Removing Data from a 2-3 Tree

The steps for removing 70 from the 2-3 tree in Figure - slide 21

Removing Data from a 2-3 Tree

[Continued]

Removing Data from a 2-3 Tree

[Continued]

Remove value from leaf

Merge nodes by deleting empty leaf and moving 80 down

Removing Data from a 2-3 Tree

[Continued]

Removing Data from a 2-3 Tree

The steps for removing 100 from the tree in Figure

Doesn't work

Redistribute

Removing Data from a 2-3 Tree

[Continued]
(d) The resulting tree

Removing Data from a 2-3 Tree

The steps for removing 80 from the 2-3 tree in Figure

Removing Data from a 2-3 Tree

[Continued]

Removing Data from a 2-3 Tree

[Continued]

Merge: move 50 down, adopt empty leaf's child, delete empty node

Delete empty root

Removing Data from a 2-3 Tree

Possible situations during the removal of a data item from a $2-3$ tree
(a) Redistributing values to fill an empty leaf

(b) Deleting an empty leaf and merging its sibling with its parent

Removing Data from a 2-3 Tree

[Continued]
(c) Redistributing values and children to fill an empty node

Removing Data from a 2-3 Tree

[Continued]

Removing Data from a 2-3 Tree

[Continued]

2-3-4 Trees

A 2-3-4 tree with the same data items as the 2-3 tree in Figure - slide 22

2-3-4 Trees

A 4-node in a 2-3-4 tree

2-3-4 Trees

- Searching and traversing
- Simple extensions of corresponding algorithms for a 2-3 tree
- Adding data
- Like addition algorithm for 2-3 tree
- Splits node by moving one data item up to parent node

Adding Data to 2-3-4 Trees

Adding 20 to a one-node 2-3-4 tree
$\begin{array}{ll}\text { (a) The original tree } & \text { (b) After splitting the tree }\end{array}$ (c) After adding 20

Adding Data to 2-3-4 Trees

(c) After adding 20

After adding 50 and 40 to the tree in Figure

Adding Data to 2-3-4 Trees

The steps for adding 70 to the tree in Figure

(a) After splitting the 4-node

(b) After adding 70

Adding Data to 2-3-4 Trees

After adding 80 and 15 to the tree in Figure
(b) After adding 70

Adding Data to 2-3-4 Trees

The steps for adding 90 to the tree in Figure

(a) After splitting the root's right child

(b) After adding 90 to the root's right child

Adding Data to 2-3-4 Trees

(b) After adding 90 to the root's right child

The steps for adding 100 to the tree in Figure

(a) After splitting the 4-node

(b) After adding 100 to the rightmost leaf

Adding Data to 2-3-4 Trees

Splitting a 4-node root when adding data to a 2-3-4 tree

Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 2 -node when adding data to a 2-3-4 tree
(a) The 4-node is a left child

(b) The 4-node is a right child

Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 3 -node when adding data to a 2-3-4 tree
(a) The 4-node is a left child

Adding Data to 2-3-4 Trees

[Continued]
(b) The 4-node is a middle child

Adding Data to 2-3-4 Trees

[Continued]
(c) The 4-node is a right child

Removing Data from a 2-3-4 Tree

- Has same beginning as removal algorithm for a 2-3 tree
- Transform each 2-node into a 3-node or a 4-node
- Insertion and removal algorithms for 2-3-4 tree require fewer steps than for 2-3 tree

Thank you

