CS302 - Data Structures

using C++

Topic: Red-Black Trees

Kostas Alexis
CS302 - Data Structures

using C++

Topic: 2-3-4 Trees

Kostas Alexis
2-3-4 Trees

• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children even better?
2-3-4 Trees

• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children even better?
 • To some extent, yes.
2-3-4 Trees - Definition

- T is a 2-3-4 tree of height h if one of the following is true:
 - T is empty, in which case h is 0.
 - T is of the form:
 \[
 \begin{align*}
 r & \quad \text{where } r \text{ is a node that contains one data item and } T_L \text{ and } T_R \text{ are both 2-3-4 trees of height } h-1. \text{ In this case: } r \text{ must be greater than each item in } T_L \text{ and smaller than each item in } T_R. \\
 T_L & \quad T_R
 \end{align*}
 \]
 - T is of the form:
 \[
 \begin{align*}
 r & \quad \text{where } r \text{ is a node that contains two data items and } T_L, T_M \text{ and } T_R \text{ are 2-3-4 trees, each of height } h-1. \text{ In this case: the smaller item in } r \text{ must be greater than each item in } T_L \text{ and smaller than each item in } T_M. \text{ The larger item in } r \text{ must be greater than each item in } T_M \text{ and smaller than each item in } T_R. \\
 T_L & \quad r \quad r \quad T_M & \quad T_R
 \end{align*}
 \]
 - T is of the form:
 \[
 \begin{align*}
 r & \quad \text{where } r \text{ is a node that contains three data items and } T_L, T_ML, T_MR \text{ and } T_R \text{ are 2-3-4 trees of height } h-1. \text{ In this case: smallest item in } r \text{ must be greater than each item in } T_L \text{ and smaller than each item in } T_ML. \text{ The middle item in } r \text{ must be greater than each in } T_ML \text{ and smaller than each item in } T_MR. \text{ The largest item in } r \text{ must be greater than each item in } T_MR \text{ and smaller than } T_R. \\
 T_L & \quad T_ML & \quad T_MR \quad T_R
 \end{align*}
 \]
2-3-4 Trees - Definition

• Rules for placing data items in the nodes of a 2-3-4 tree

• The previous definition of a 2-3-4 tree implies the following rules for data placement:
 • A 2-node, which has two children, must contain a single data item that satisfies the relationships as in a 2-3 tree.
 • A 3-node, which has three children, must contain two data items that satisfy the relationships as in a 2-3 tree.
 • A 4-node, which has four children, must contain three data items S, M, and L that satisfy the following relationships: S is greater than the left child’s item(s) and less than the middle-left child’s item(s); M is greater than the middle-left child’s item(s) and less than the middle-right child’s item(s); L is greater than the middle-right child’s item(s) and less than the right child’s item(s).

• A leaf may contain either one, two, or three data items.
2-3-4 Trees

• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children even better?
 • More efficient addition and removal operations than a 2-3 tree
 • Has greater storage requirements due to the additional data members in its 4-nodes
2-3-4 Trees

• If a 2-3 tree offers benefits, are trees whose nodes can have more than three children even better?
 • More efficient addition and removal operations than a 2-3 tree
 • Has greater storage requirements due to the additional data members in its 4-nodes
 • However, a 2-3-4 tree can be transformed into a special binary tree that reduces the storage requirements
2-3-4 Trees

A 2-3-4 tree with the same data items as the 2-3 tree in Figure.
2-3-4 Trees

A 4-node in a 2-3-4 tree
2-3-4 Trees

- Searching and traversing
 - Simple extensions of corresponding algorithms for a 2-3 tree
- Adding data
 - Like addition algorithm for 2-3 tree
 - Splits node by moving one data item up to parent node [bubble up]
Adding Data to 2-3-4 Trees

Adding 20 to a one-node 2-3-4 tree

(a) The original tree (b) After splitting the tree (c) After adding 20

10 30 60

10 30 60

10 20 60
Adding Data to 2-3-4 Trees

After adding 50 and 40 to the tree in Figure

(c) After adding 20
Adding Data to 2-3-4 Trees

The steps for adding 70 to the tree in Figure

(a) After splitting the 4-node

(b) After adding 70
Adding Data to 2-3-4 Trees

After adding 80 and 15 to the tree in Figure

(b) After adding 70
Adding Data to 2-3-4 Trees

The steps for adding 90 to the tree in Figure

(a) After splitting the root’s right child

(b) After adding 90 to the root’s right child
Adding Data to 2-3-4 Trees

The steps for adding 100 to the tree in Figure

(a) After splitting the 4-node

(b) After adding 100 to the rightmost leaf

(b) After adding 90 to the root’s right child
Adding Data to 2-3-4 Trees

Splitting a 4-node root when adding data to a 2-3-4 tree

- The practice is to split each 4-node as soon as it is encountered during the search from the root to the leaf that will accommodate the additional data item.

- As a result, each 4-node either will:
 - Be the root,
 - Have a 2-node parent, or
 - Have a 3-node parent
Adding Data to 2-3-4 Trees

Splitting a 4-node root when adding data to a 2-3-4 tree
Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 2-node when adding data to a 2-3-4 tree

(a) The 4-node is a left child

(b) The 4-node is a right child
Adding Data to 2-3-4 Trees

Splitting a 4-node whose parent is a 3-node when adding data to a 2-3-4 tree
Adding Data to 2-3-4 Trees

(b) The 4-node is a middle child
Adding Data to 2-3-4 Trees

(c) The 4-node is a right child
Removing Data from a 2-3-4 Tree

- Has same beginning as removal algorithm for a 2-3 tree
- Transform each 2-node into a 3-node or a 4-node
- Insertion and removal algorithms for 2-3-4 tree require fewer steps than for 2-3 tree
CS302 - Data Structures

using C++

Topic: Red-Black Trees

Kostas Alexis
Red-Black Trees

• A 2-3-4 tree is efficient with respect to addition and removal operations but requires more storage than binary search tree
Red-Black Trees

- A 2-3-4 tree is efficient wrt to addition and removal operations but requires more storage than binary search tree
- Red-black tree has the advantages of a 2-3-4 tree but requires less storage
Red-Black Trees

- A 2-3-4 tree is efficient wrt to addition and removal operations but requires more storage than binary search tree.
- **Red-black** tree has the advantages of a 2-3-4 tree but requires less storage.
- In a **red-black** tree,
Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but requires more storage than binary search tree
• **Red-black** tree has the advantages of a 2-3-4 tree but requires less storage
• In a **red-black** tree,
 • **Red** pointers link 2-nodes that now contain values that were in a 3-node or a 4-node
Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but requires more storage than binary search tree
• **Red-black** tree has the advantages of a 2-3-4 tree but requires less storage
• In a **red-black** tree,
 • **Red** pointers link 2-nodes that now contain values that were in a 3-node or a 4-node
 • A **red** pointer references a **red** node
Red-Black Trees

• A 2-3-4 tree is efficient wrt to addition and removal operations but requires more storage than binary search tree

• **Red-black** tree has the advantages of a 2-3-4 tree but requires less storage

• In a **red-black** tree,
 • **Red** pointers link 2-nodes that now contain values that were in a 3-node or a 4-node
 • A **red** pointer references a **red** node
 • A **black** pointer references a **black** node
Red-Black Trees

- Represent 2-3-4 tree as a BST
- Use “internal” red edges for 3- and 4-nodes
Red-Black Trees

Red-black representations of a 4-node and a 3-node

(a) A 4-node

(b) A 3-node

Red pointer
Black pointer
Red-Black Trees

Red-black representations of a 4-node and a 3-node

(a) A 4-node

(b) A 3-node

Representation of a 3-node is non-unique
Red-Black Trees

A red-black tree that represents the 2-3-4 tree in Figure
Red-Black Trees

Properties of a Red-Black Tree:
• The root is black
• Every red node has a black parent
• Any children of a red node are black; that is, a red node cannot have red children
• Every path from the root to a leaf contains the same number of black nodes
Red-Black Trees
Red-Black Trees

The root and all leaves (nil) are black
Red-Black Trees

All red nodes have black children
Red-Black Trees

All paths from a node to its leaf (nil) descendants contain the same number of black nodes.
Red-Black Trees

We derive the class of Red-Black nodes from the class BinaryNode

```cpp
enum Color {RED, BLACK};

template<class ItemType>
class RedBlackNode : public BinaryNode<ItemType>
{
private:
  Color leftColor;
  Color rightColor;
public:
  // Get and set methods for leftColor and rightColor
  // ...
} // end RedBlackNode
```
Red-Black Trees

Further properties

• Nodes require at a minimum one storage bit to keep track of color
• The longest path (root to furthest leaf) is no more than twice the length of the shortest path (root to nearest leaf)
 • Shortest path: all **black** nodes
 • Longest path: alternating between **red** and **black** nodes
Searching and Traversing a Red-Black Tree

• A red-black tree is a binary search tree
• Thus, search and traversal
 • Use algorithms for binary search tree
 • Simply ignore color of pointers
 • Code may not change at all!
Adding to and Removing from a Red-Black Tree

• Red-black tree represents a 2-3-4 tree
 • Simply adjust 2-3-4 addition algorithms
 • Accommodate red-black representation

• Splitting equivalent of a 4-node requires simple color changes
 • Pointer changes called rotations result in a shorter tree
Adding to and Removing from a **Red-Black Tree**

- When adding a new node, the Red-Black Tree properties must be maintained.
Adding to and Removing from a Red-Black Tree

Case 1: Splitting a red-black representation of a 4-node root
Adding to and Removing from a Red-Black Tree

Case 2: Splitting a red-black representation of a 4-node whose parent is a 2-node
Adding to and Removing from a Red-Black Tree

[Continued]

(b) The 4-node is a right child

\[\begin{array}{c}
P \\
 a \\
 M \\
 S \\
 b \\
 c \\
 L \\
 d \\
 e \\
\end{array}\xrightarrow{\text{Color changes}}
\begin{array}{c}
P \\
 a \\
 M \\
 S \\
 b \\
 c \\
 L \\
 d \\
 e \\
\end{array}\]
Adding to and Removing from a Red-Black Tree

Case 3: Splitting a red-black representation of a 4-node whose parent is a 3-node

(a) The 4-node is a left child
Adding to and Removing from a Red-Black Tree

[Continued]
Adding to and Removing from a Red-Black Tree
[Continued]

(c) The 4-node is a right child

Rotation and color changes

Color changes
Red-Black Trees

Properties re-written
• Every node is either red or black
• The root is black
• Every leaf (NIL) is black
• If a node is red, then both its children are black
 • No two consecutive red nodes on a simple path from the root to a leaf
• For each node, all paths from that node to a leaf contain the same number of black nodes
Red-Black Trees

An example

• For convenience, we add NIL nodes and refer to them as the leaves of the tree (Color[NIL]=Black)
Red-Black Trees

• Definitions

• **Height of a node** = the number of edges in the longest path to a leaf

• **Black-height bh(x) of a node x** = the number of black nodes (including NIL on the path from x to a leaf, not counting x)
Red-Black Trees

• **Addition (Insertion)**
 • What color to make the new node?
 • **Red**?
 • Let’s insert 35
 • Property 4 is violated: *if a node is red, then both children are black*
 • **Black**?
 • Let’s insert 14
 • Property 5 is violated: *all paths from a node to its leaves contain the same number of black nodes*
Red-Black Trees

- Deletion of item
 - What color was the node that was removed? Red?
 - Every node is either red or black (OK)
 - The root is black (OK)
 - Every leaf (NIL) is black (OK)
 - If a node is red, then both its children are black (OK)

- For each node, all paths from the node to descendant leaves contain the same number of black nodes (OK)
Red-Black Trees

• Deletion of item
 • What color was the node that was removed? **Black**?
 • Every node is either **red** or **black** (OK)
 • The root is **black** (NOT OK! If removing the root and the child that replaces it is red)
 • Every leaf (NIL) is **black** (OK)
 • If a node is **red**, then both its children are **black** (Not OK! Could create two red nodes in a row)

• For each node, all paths from the node to descendant leaves contain the same number of **black** nodes (Not OK! Could change the black heights of some nodes)
Red-Black Trees

- **Rotations**
 - Operations for re-structuring the tree after insert and delete operations
 - Together with some node re-coloring they help restore the red-black tree property
 - Change some of the pointer structure
 - Preserve the binary search-tree property
 - Two types of rotations
 - Left & right rotations
Red-Black Trees

• **Left Rotations**
 • Assumptions for a left rotation on a node x
 • The right child y of x is not NIL

 ![Left Rotation Diagram]

 • **Idea**
 • Pivots around the link from x to y
 • Makes y the new root of the subtree
 • x becomes y’s left child
 • y’s left child becomes x’s right child
Red-Black Trees

• Left Rotations: Example
Red-Black Trees

• Left-Rotate(T, x)

1. \(y \leftarrow \text{right}[x] \) \hspace{1cm} // Set \(y \)
2. \(\text{right}[x] \leftarrow \text{left}[y] \) \hspace{1cm} // \(y \)'s left subtree becomes \(x \)'s right subtree
3. \(\text{if} \ \text{left}[y] \neq \text{NIL} \)
4. \(\text{then} \ \text{p}[\text{left}[y]] \leftarrow x \) \hspace{1cm} // Set the parent relation from left[y] to \(x \)
5. \(\text{p}[y] \leftarrow \text{p}[x] \) \hspace{1cm} // The parent of \(x \) becomes the parent of \(y \)
6. \(\text{if} \ \text{p}[x] = \text{NIL} \)
7. \(\text{then} \ \text{root}[T] \leftarrow y \)
8. \(\text{else if} \ x = \text{left}[\text{p}[x]] \)
9. \(\text{then} \ \text{left}[\text{p}[x]] \leftarrow y \)
10. \(\text{else} \ \text{right}[\text{p}[x]] \leftarrow y \)
11. \(\text{left}[y] \leftarrow x \) \hspace{1cm} // Put \(x \) on \(y \)'s left
12. \(\text{p}[x] \leftarrow y \) \hspace{1cm} // \(y \) becomes \(x \)'s parent
Red-Black Trees

- **Right Rotations**
 - Assumptions for a right rotation on a node x
 - The right child x of y is not NIL

- **Idea**
 - Pivots around the link from y to x
 - Makes x the new root of the subtree
 - y becomes x’s right child
 - x’s right child becomes y’s left child
Red-Black Trees

• **Add (Insert) Item**
 • **Goal**
 • Insert a new node z into a red-black tree

• **Idea**
 • Insert node z into the tree as for an ordinary binary search tree
 • Color the node **red**
 • Restore the red-black tree properties
Red-Black Trees

- **RB-Insert(T, z)**

1. \(y \leftarrow \text{NIL} \)
2. \(x \leftarrow \text{root}[T] \)
3. while \(x \neq \text{NIL} \)
4. \hspace{1em} do \(y \leftarrow x \)
5. \hspace{2em} if \(\text{key}[z] < \text{key}[x] \)
6. \hspace{3em} then \(x \leftarrow \text{left}[x] \)
7. \hspace{2em} else \(x \leftarrow \text{right}[x] \)
8. \(\text{p}[z] \leftarrow y \) \(\star \) • Sets the parent of \(z \) to be \(y \)

- Initialize nodes \(x \) and \(y \)
- Throughout the algorithm \(y \) points to the parent of \(x \)
- Go down the tree until reaching a leaf
- At that point \(y \) is the parent of the node to be inserted
Red-Black Trees

• **RB-Insert(T,z)**

9. if y = NIL
 \[\text{The tree was empty: set the new node to be the root}\]
10. then root[T] ← z
11. else if key[z] < key[y]
 \[\text{Otherwise, set z to be the left or right child of y, depending on whether the inserted node is smaller or larger than y's key}\]
12. then left[y] ← z
13. else right[y] ← z
14. left[z] ← NIL
15. right[z] ← NIL
16. color[z] ← RED
17. RB-INSERT-FIXUP(T, z)

\[\text{Set the fields of the newly added node}\]
\[\text{Fix any inconsistencies that could have been introduced by adding this new red node}\]
Red-Black Trees

- Red-Black Tree Properties affected by Insert
 1. Every node is either red or black \textit{(OK)}
 2. The root is black \textit{(Not OK! – If z is the root)}
 3. Every leaf (NIL) is black \textit{(OK)}
 4. If a node is red then both its children are black \textit{(Not OK! – if p(z) is red, z and p(z) are both red)}
 5. For each node, all paths from node to descendant leaves contain the same number of black nodes \textit{(OK)}
Red-Black Trees

- **RB-Insert-Fixup**
 - Case 1
 - z’s “uncle” (y) is red
 - z either left or right child
 - Idea
 - p[p[z]] (z’s grandparent) must be black
 - color p[z] ← black
 - color y ← black
 - color p[p[z]] ← red
 - z = p[p[z]]
 - Push the “red” violation up the tree
Red-Black Trees

- **RB-Insert-Fixup**
 - **Case 2**
 - z’s “uncle” (y) is **black**
 - Z is a left child

- **Idea**
 - color p[z] ← **black**
 - color p[p[z]] ← **red**
 - RIGHT-ROTATE(T, p[p[z]])
 - No longer have 2 **reds** in a row
 - p[z] is now **black**
Red-Black Trees

• RB-Insert-Fixup
 • Case 3
 • \(z \)'s “uncle” (\(y \)) is **black**
 • \(z \) is a right child

• Idea
 • \(z \leftarrow p[z] \)
 • LEFT-ROTATE(\(T, z \))

\(\Rightarrow \) now \(z \) is a left child, and both \(z \) and \(p[z] \) are **red** \(\Rightarrow \) **case 2**
Red-Black Trees

• Insertion Example (insert 4)

Case 1
z and p[z] are both red
z’s uncle y is red

Case 2
z and p[z] are both red
z’s uncle y is black
z is a right child

z and p[z] are red
z’s uncle y is black
z is a left child
Red-Black Trees

• RB-Insert-Fixup(T, z)

1. while color[p[z]] = RED
2. if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]]
4. if color[y] = RED
5. then Case1
6. else if z = right[p[z]]
7. then Case3
8. Case2
9. else (same as then clause with “right” and “left” exchanged for lines 3-4)
10. color[root[T]] ← BLACK

The while loop repeats only when case1 is executed: O(logN) times
Set the value of x’s “uncle”
We just inserted the root, or
The red violation reached the root
Red-Black Trees

Time Complexity
• Search: $O(\log n)$
• Insert: $O(\log n)$
• Remove: $O(\log n)$
Red-Black Trees

Time Complexity
- Search: $O(\log n)$
- Insert: $O(\log n)$
- Remove: $O(\log n)$

Storage Complexity
- $O(n)$