CS302 - Data Structures
using C++
Topic: Left-Leaning Red-Black Trees Implementation

Kostas Alexis

Relying on the implementation by Lee Stanza — consider these slides only for lecture use. Link to the
online implementation by Lee Stanza:
http://www.teachsolaisgames.com/articles/balanced left leaning.html



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

 Data Structures

« For evaluation purposes, a simple key-value pair is defined, where data is sorted with
an unsigned 32bit integer.
« The value is a blind void* pointer.
struct VoidRef t

{
U32 Key,

void* pContext;
¥

« Each node in the tree uses the following structure
struct LLTB_t

{
VoidRef_t Ref;
bool IsRed;
LLTB_t* pLeft;
LLTB_t* pRight;
}s

&3

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced left leaning.html PR



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
« Consider the following tree

« One operation used by both insertion and deletion is RotatelLeft.

« This function will rotate the nodes to the left = "6 will fake on the red/black color
that “4” had before and “4" will change to be a red node.

 Likewise, the RotateRight function will rotate the nodes to the right.

« This function will make “2" take on the red/black color that “4" had previously
and then change “4" to be ared node.

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced left leaning.html “ESSOTQMOUS@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* Rotateleft
static QzLLTB_t* RotateLeft(QzLLTB_t *pNode)

{
QzLLTB_t *pTemp = pNode->pRight;
pNode->pRight = pTemp->plLeft;
pTemp->pLeft = pNode;
pTemp->IsRed = pNode->IsRed;
pNode->IsRed = true;
return pTemp;

}

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced left leaning.html “Eﬁé"w{m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* RotateRight
static QzLLTB_t* RotateRight(QzLLTB_ t *pNode)

{
QzLLTB_t *pTemp = pNode->pLeft;
pNode->pLeft = pTemp->pRight;
pTemp->pRight = pNode;
pTemp->IsRed = pNode->IsRed;
pNode->IsRed = true;
return pTemp;
}
Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html #%ﬁ?ﬁl{ws@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion

* ColorFlip — Given any node, this method will toggle the red/black color of that
node and both of its children

static void ColorFlip(QzLLTB t *pNode)

{
pNode->IsRed = !pNode->IsRed;
if (NULL != pNode->plLeft) {
pNode->pLeft->IsRed = !IpNode->pLeft->IsRed;
¥
if (NULL != pNode->pRight) {
pNode->pRight->IsRed = !pNode->pRight->IsRed;
¥
¥

 This operation may introduce a color violation. We will need to do fix-up.

&3

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced left leaning.html PR



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion

* InsertRec — Recursively traverse the free to find the location of new key insertion.

QzLLTB_t* LeftLeaningRedBlack: :InsertRec(QzLLTB_t* pNode, VoidRef_t ref)

{
// Special case for inserting a leaf. Just return the pointer;
// the caller will insert the new node into the parent node.
if (NULL == pNode) {
pNode = NewNode();
pNode->Ref = ref;
return pNode;
}
// If we perform the color flip here, the tree is assembled as a
// mapping of a 2-3-4 tree.
#if defined(USE_234 TREE)
// This color flip will effectively split 4-nodes on the way down
// the tree (since 4-nodes must be represented by a node with two
// red children). By performing the color flip here, the 4-nodes
// will remain in the tree after the insertion.
if (IsRed(pNode->pLeft) && IsRed(pNode->pRight)) {
ColorFlip(pNode);
}
#endif

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html

P HOBGTS
LAR


http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* InsertRec — Recursively traverse the free to find the location of new key insertion.

//
//
//
if

}

//
//
//
//
!/
!/
!/
!/
!/

Check to see if the value is already in the tree. If so, we
simply replace the value of the key, since duplicate keys are
not allowed.
(ref.Key == pNode->Ref.Key) {

pNode->Ref = ref;

Otherwise recurse left or right depending on key value.
Note: pLeft or pRight may be a NULL pointer before recursing.
This indicates that pNode is a leaf (or only has one child),
so the new node will be inserted using the return value.

The other reason for pass-by-value, followed by an assignment,
is that the recursive call may perform a rotation, so the
pointer that gets passed in may end up not being the root of
the subtree once the recursion returns.

else {

if (ref.Key < pNode->Ref.Key) {
pNode->pLeft = InsertRec(pNode->pLeft, ref);

}

else {

}

pNode->pRight = InsertRec(pNode->pRight, ref);
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html

.’| W ROBOTS
LAR

==


http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* InsertRec — Recursively traverse the free to find the location of new key insertion.

// If necessary, apply a rotation to get the correct representation
// in the parent node as we're backing out of the recursion. This
// places the tree in a state where the parent can safely apply a
// rotation to restore the required black/red balance of the tree.

// Fix a right-leaning red node: this will assure that a 3-node is
// the left child.

if (IsRed(pNode->pRight) && (false == IsRed(pNode->plLeft)))
{

}

pNode = RotatelLeft(pNode);

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ‘?ﬁég%m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* InsertRec — Recursively traverse the free to find the location of new key insertion.

// Fix two reds in a row: this will rebalance a 4-node.
if (IsRed(pNode->pLeft) && IsRed(pNode->pLeft->pLeft))

{
pNode = RotateRight(pNode);
}
Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ%ﬁ?’%}m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
* InsertRec — Recursively traverse the free to find the location of new key insertion.

// If we perform the color flip here, the tree is assembled as a

// mapping of a 2-3 tree.

#if !defined(USE_234 TREE)

// This color flip will effectively split 4-nodes on the way back

// out of the tree. By doing this here, there will be no 4-nodes

// left in the tree after the insertion is complete.

if (IsRed(pNode->pLeft) && IsRed(pNode->pRight)) {
ColorFlip(pNode);

}
#tendif

// Return the new root of the subtree that was just updated,
// since rotations may have changed the value of this pointer.
return pNode;

« Note: USE_234_TREE - will control where the color flip is performed.
» |If done near the beginning of the insertion, this will produce a tree that maps to a 2-3-4 tree.
« Butif the color flip is near the end of the function, the tree will be equivalent to a 2-3 free.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ‘?ﬁég%m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Insertion
e Insert — Use InsertRec and ensure that the root of the free remains black.
bool LeftLeaningRedBlack::Insert(VoidRef t ref)

{
m_pRoot = InsertRec(m_pRoot, ref);
// The root node of a red-black tree must be black.
m_pRoot->IsRed = false;
return true;
}

&3

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html L



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

 MoveRedLeft — when given a sub-free that starts with a
red node, it applies the following transformations:

Original:

ColorFlip:

T
RotateRight:

RotatelLeft;

ColorFlip:

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced g



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

» Deletion
« MoveRedLeft — when given a sub-tree that starts with a

red node, it applies the following transformations:

« Goal to change the 3-node (the node with the single red child)
from being the right child to being the left child. ColorFlip:

Original:

T
RotateRight:

RotatelLeft;

ColorFlip:

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced g



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

 MoveRedLeft — when given a sub-free that starts with a
red node, it applies the following transformations:

« Goal to change the 3-node (the node with the single red child)
from being the right child to being the left child. ColorFlip:

« Once complete, the new root of the subftree is still a red node,
but the 3-node is now the left child which preserves “left-
leaningness”.

Original:

RotateRight:

RotatelLeft;

ColorFlip:

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced g



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

e MoveRedlLeft

static QzLLTB_t* MoveRedLeft(QzLLTB_ t *pNode)

{

// If both children are black, we turn these three nodes into a
// 4-node by applying a color flip.
ColorFlip(pNode);

// But we may end up with a case where pRight has a red child.
// Apply a pair of rotations and a color flip to make pNode a
// red node, both of its children become black nodes, and pLeft
// becomes a 3-node.
if ((NULL !'= pNode->pRight) && IsRed(pNode->pRight->pLeft))
{

pNode->pRight = RotateRight(pNode->pRight);

pNode = RotatelLeft(pNode);

ColorFlip(pNode);
}

return pNode;

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html

3
M
o AUTCNOMOUS
".’LROBOTS
LAR


http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

« ModeRedRight - similar / use when pNode has two red children and its left child is a
3 node. This re-arranges the subiree so that the root is a red node & left-child is still a

3-node
static QzLLTB_t* MoveRedRight(QzLLTB_t *pNode)
{
// Applying a color flip may turn pNode into a 4-node,
// with both of its children being red.
ColorFlip(pNode);
// However, this may cause a situation where both of pNode's
// children are red, along with pNode->pLeft->pLeft. Applying a
// rotation and a color flip will fix this special case, since
// it makes pNode red and pNode's children black.
if ((NULL != pNode->pLeft) && IsRed(pNode->pLeft->pLeft))
{
pNode = RotateRight(pNode);
ColorFlip(pNode);
}
return pNode;
}

Relying on the implementation by Lee Stanza: hitp://www.teachsolaisgames.com/articles/balanced left leaning.html L i

&3



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

 FindMin - deleting internal nodes has to deal with the fact that often re-arranging a
significant part of the tree is required.

 Instead we find the smallest key that is larger than the key being deleted.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ‘?ﬁég%m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

FindMin — delefing infernal nodes has to deal with the fact that often re-arranging a
significant part of the tree is required.

Instead we find the smallest key that is larger than the key being deleted.

Done by starting at the node’s right child, then traversing left until we reach a leaf
node.

The contents of that leaf node can then be used to replace the value being
deleted (replacement key).

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ%ﬁ?’%}m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion
 FindMin — Find replacement key
static QzLLTB_t* FindMin(QzLLTB_t *pNode)

{
while (NULL != pNode->pLeft) {
pNode = pNode->plLeft;
}
return pNode;
}

&3

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html L



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion
« FindMin — Find replacement key
static QzLLTB_t* FindMin(QzLLTB_t *pNode)

{
while (NULL != pNode->pLeft) {
pNode = pNode->plLeft;
}
return pNode;
}

* Why is this the solution?

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ%ﬁ?’%}m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

 DeleteMin — Delete the empty leaf node found by FindMin

QzLLTB_t* LeftLeaningRedBlack: :DeleteMin(QzLLTB_t *pNode)

{

// If this node has no children, we're done.
// Due to the arrangement of an LLRB tree, the node cannot have a
// right child.
if (NULL == pNode->pLeft) {
Free(pNode);
return NULL;
}
// If these nodes are black, we need to rearrange this subtree to
// force the left child to be red.
if ((false == IsRed(pNode->pLeft)) && (false == IsRed(pNode->pLeft->pLeft)))

{
¥

// Continue recursing to locate the node to delete.

pNode->pLeft = DeleteMin(pNode->pLeft);

// Fix right-leaning red nodes and eliminate 4-nodes on the way up.
// Need to avoid allowing search operations to terminate on 4-nodes,
// or searching may not locate intended key.

return FixUp(pNode);

pNode = MoveRedLeft(pNode);

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html

‘
bl

AUTONOMOUS
".’L ROBOTE
LAR


http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

* FixUp — As we recurse down the free, the code will leave right-leaning red nodes as
unbalanced 4-nodes. Recover using FixUp.

static QzLLTB_t* FixUp(QzLLTB_t *pNode)
{
// Fix right-leaning red nodes.

if (IsRed(pNode->pRight)) {
pNode = RotatelLeft(pNode);
}
// Detect if there is a 4-node that traverses down the left.
// This is fixed by a right rotation, making both of the red
// nodes the children of pNode.
if (IsRed(pNode->pLeft) & IsRed(pNode->pLeft->pLeft))

{

}
// Split 4-nodes.

if (IsRed(pNode->pLeft) && IsRed(pNode->pRight))
{

}

return pNode;

pNode = RotateRight(pNode);

ColorFlip(pNode);

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ%ﬁ?’%}m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

* DeleteRec — Recursive traversal. This code will leave right-leaning red nodes and
unbalanced 4-nodes as it works down the tree. Will require FixUp.

QzLLTB_t* LeftLeaningRedBlack: :DeleteRec(QzLLTB_t *pNode, const U32 key)
{
if (key < pNode->Ref.Key) {
if (NULL != pNode->pLeft) {
// If pNode and pNode->pLeft are black, we may need to
// move pRight to become the left child if a deletion
// would produce a red node.

if ((false == IsRed(pNode->pLeft)) && (false == IsRed(pNode->pLeft->pLeft)))
{

}

pNode = MoveRedLeft(pNode);

pNode->pLeft = DeleteRec(pNode->pLeft, key);

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ%ﬁ?’%}m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

* DeleteRec — Recursive traversal. This code will leave right-leaning red nodes and
unbalanced 4-nodes as it works down the tree. Will require FixUp.

else {
// If the left child is red, apply a rotation so we make
// the right child red.
if (IsRed(pNode->pLeft)) {
pNode = RotateRight(pNode);

}

// Special case for deletion of a leaf node.
// The arrangement logic of LLRBs assures that in this case,
// pNode cannot have a left child.
if ((key == pNode->Ref.Key) && (NULL == pNode->pRight))
{
Free(pNode);
return NULL;

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ‘?ﬁég%m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion

* DeleteRec — Recursive traversal. This code will leave right-leaning red nodes and
unbalanced 4-nodes as it works down the tree. Will require FixUp.

// If we get here, we need to traverse down the right node.

// However, if there is no right node, then the target key is

// not in the tree, so we can break out of the recursion.

if (NULL != pNode->pRight) {
if ((false == IsRed(pNode->pRight)) && (false == IsRed(pNode->pRight->pLeft)))
{

}

// Deletion of an internal node: We cannot delete this node
// from the tree, so we have to find the node containing
// the smallest key value that is larger than the key we're
// deleting. This other key will replace the value we're
// deleting, then we can delete the node that previously
// held the key/value pair we just moved.
if (key == pNode->Ref.Key) {
pNode->Ref = FindMin(pNode->pRight)->Ref;
pNode->pRight = DeleteMin(pNode->pRight);

pNode = MoveRedRight(pNode);

}

else {
pNode->pRight = DeleteRec(pNode->pRight, key);
}


http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion
* DeleteRec — Recursive traversal. This code will leave right-leaning red nodes and

unbalanced 4-nodes as it works down the tree. Will require FixUp.

}

// Fix right-leaning red nodes and eliminate 4-nodes on the way up.
// Need to avoid allowing search operations to terminate on 4-nodes,
// or searching may not locate intended key.

return FixUp(pNode);

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

* Deletion
 Delete — Rely on DeleteRec and also ensure that the root remains black.

void LeftlLeaningRedBlack::Delete(const U32 key)

{
if (NULL !'= m_pRoot) {
m_pRoot = DeleteRec(m_pRoot, key);

// Assuming we have not deleted the last node from the tree, we
// need to force the root to be a black node to conform with the
// the rules of a red-black tree.
if (NULL !'= m_pRoot) {

m_pRoot->IsRed = false;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced left leaning.html ﬁ‘?ﬁég%m@



http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Thank you



