
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Left-Leaning Red-Black Trees Implementation

Relying on the implementation by Lee Stanza – consider these slides only for lecture use. Link to the

online implementation by Lee Stanza:

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Data Structures
• For evaluation purposes, a simple key-value pair is defined, where data is sorted with

an unsigned 32bit integer.
• The value is a blind void* pointer.

• Each node in the tree uses the following structure

struct VoidRef_t

{

U32 Key;

void* pContext;

};

struct LLTB_t

{

VoidRef_t Ref;

bool IsRed;
LLTB_t* pLeft;

LLTB_t* pRight;

};

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• Consider the following tree

• One operation used by both insertion and deletion is RotateLeft.
• This function will rotate the nodes to the left – “6” will take on the red/black color

that “4” had before and “4” will change to be a red node.

• Likewise, the RotateRight function will rotate the nodes to the right.
• This function will make “2” take on the red/black color that “4” had previously

and then change “4” to be a red node.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• RotateLeft

static QzLLTB_t* RotateLeft(QzLLTB_t *pNode)
{

QzLLTB_t *pTemp = pNode->pRight;
pNode->pRight = pTemp->pLeft;
pTemp->pLeft = pNode;
pTemp->IsRed = pNode->IsRed;
pNode->IsRed = true;
return pTemp;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• RotateRight

static QzLLTB_t* RotateRight(QzLLTB_t *pNode)
{

QzLLTB_t *pTemp = pNode->pLeft;
pNode->pLeft = pTemp->pRight;
pTemp->pRight = pNode;
pTemp->IsRed = pNode->IsRed;
pNode->IsRed = true;
return pTemp;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• ColorFlip – Given any node, this method will toggle the red/black color of that

node and both of its children

• This operation may introduce a color violation. We will need to do fix-up.

static void ColorFlip(QzLLTB_t *pNode)
{

pNode->IsRed = !pNode->IsRed;

if (NULL != pNode->pLeft) {
pNode->pLeft->IsRed = !pNode->pLeft->IsRed;

}

if (NULL != pNode->pRight) {
pNode->pRight->IsRed = !pNode->pRight->IsRed;

}
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• InsertRec – Recursively traverse the tree to find the location of new key insertion.

QzLLTB_t* LeftLeaningRedBlack::InsertRec(QzLLTB_t* pNode, VoidRef_t ref)
{

// Special case for inserting a leaf. Just return the pointer;
// the caller will insert the new node into the parent node.
if (NULL == pNode) {

pNode = NewNode();
pNode->Ref = ref;
return pNode;

}

// If we perform the color flip here, the tree is assembled as a
// mapping of a 2-3-4 tree.
#if defined(USE_234_TREE)

// This color flip will effectively split 4-nodes on the way down
// the tree (since 4-nodes must be represented by a node with two
// red children). By performing the color flip here, the 4-nodes
// will remain in the tree after the insertion.
if (IsRed(pNode->pLeft) && IsRed(pNode->pRight)) {

ColorFlip(pNode);
}

#endif

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• InsertRec – Recursively traverse the tree to find the location of new key insertion.

// Check to see if the value is already in the tree. If so, we
// simply replace the value of the key, since duplicate keys are
// not allowed.
if (ref.Key == pNode->Ref.Key) {

pNode->Ref = ref;
}
// Otherwise recurse left or right depending on key value.
// Note: pLeft or pRight may be a NULL pointer before recursing.
// This indicates that pNode is a leaf (or only has one child),
// so the new node will be inserted using the return value.
//
// The other reason for pass-by-value, followed by an assignment,
// is that the recursive call may perform a rotation, so the
// pointer that gets passed in may end up not being the root of
// the subtree once the recursion returns.
else {

if (ref.Key < pNode->Ref.Key) {
pNode->pLeft = InsertRec(pNode->pLeft, ref);

}
else {

pNode->pRight = InsertRec(pNode->pRight, ref);
}

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• InsertRec – Recursively traverse the tree to find the location of new key insertion.

// If necessary, apply a rotation to get the correct representation
// in the parent node as we're backing out of the recursion. This
// places the tree in a state where the parent can safely apply a
// rotation to restore the required black/red balance of the tree.

// Fix a right-leaning red node: this will assure that a 3-node is
// the left child.
if (IsRed(pNode->pRight) && (false == IsRed(pNode->pLeft)))
{

pNode = RotateLeft(pNode);
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• InsertRec – Recursively traverse the tree to find the location of new key insertion.

// Fix two reds in a row: this will rebalance a 4-node.
if (IsRed(pNode->pLeft) && IsRed(pNode->pLeft->pLeft))
{

pNode = RotateRight(pNode);
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• InsertRec – Recursively traverse the tree to find the location of new key insertion.

• Note: USE_234_TREE - will control where the color flip is performed.
• If done near the beginning of the insertion, this will produce a tree that maps to a 2-3-4 tree.

• But if the color flip is near the end of the function, the tree will be equivalent to a 2-3 tree.

// If we perform the color flip here, the tree is assembled as a
// mapping of a 2-3 tree.
#if !defined(USE_234_TREE)
// This color flip will effectively split 4-nodes on the way back
// out of the tree. By doing this here, there will be no 4-nodes
// left in the tree after the insertion is complete.
if (IsRed(pNode->pLeft) && IsRed(pNode->pRight)) {

ColorFlip(pNode);
}
#endif

// Return the new root of the subtree that was just updated,
// since rotations may have changed the value of this pointer.
return pNode;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Insertion
• Insert – Use InsertRec and ensure that the root of the tree remains black.

bool LeftLeaningRedBlack::Insert(VoidRef_t ref)
{

m_pRoot = InsertRec(m_pRoot, ref);

// The root node of a red-black tree must be black.
m_pRoot->IsRed = false;

return true;
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• MoveRedLeft – when given a sub-tree that starts with a

red node, it applies the following transformations:

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• MoveRedLeft – when given a sub-tree that starts with a

red node, it applies the following transformations:
• Goal to change the 3-node (the node with the single red child)

from being the right child to being the left child.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• MoveRedLeft – when given a sub-tree that starts with a

red node, it applies the following transformations:
• Goal to change the 3-node (the node with the single red child)

from being the right child to being the left child.

• Once complete, the new root of the subtree is still a red node,
but the 3-node is now the left child which preserves “left-
leaningness”.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• MoveRedLeft

static QzLLTB_t* MoveRedLeft(QzLLTB_t *pNode)
{

// If both children are black, we turn these three nodes into a
// 4-node by applying a color flip.
ColorFlip(pNode);

// But we may end up with a case where pRight has a red child.
// Apply a pair of rotations and a color flip to make pNode a
// red node, both of its children become black nodes, and pLeft
// becomes a 3-node.
if ((NULL != pNode->pRight) && IsRed(pNode->pRight->pLeft))
{

pNode->pRight = RotateRight(pNode->pRight);
pNode = RotateLeft(pNode);
ColorFlip(pNode);

}
return pNode;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• ModeRedRight – similar / use when pNode has two red children and its left child is a

3 node. This re-arranges the subtree so that the root is a red node & left-child is still a
3-node

static QzLLTB_t* MoveRedRight(QzLLTB_t *pNode)
{

// Applying a color flip may turn pNode into a 4-node,
// with both of its children being red.
ColorFlip(pNode);

// However, this may cause a situation where both of pNode's
// children are red, along with pNode->pLeft->pLeft. Applying a
// rotation and a color flip will fix this special case, since
// it makes pNode red and pNode's children black.
if ((NULL != pNode->pLeft) && IsRed(pNode->pLeft->pLeft))
{

pNode = RotateRight(pNode);
ColorFlip(pNode);

}
return pNode;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• FindMin – deleting internal nodes has to deal with the fact that often re-arranging a

significant part of the tree is required.

• Instead we find the smallest key that is larger than the key being deleted.

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• FindMin – deleting internal nodes has to deal with the fact that often re-arranging a

significant part of the tree is required.

• Instead we find the smallest key that is larger than the key being deleted.

• Done by starting at the node’s right child, then traversing left until we reach a leaf
node.

• The contents of that leaf node can then be used to replace the value being
deleted (replacement key).

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• FindMin – Find replacement key

static QzLLTB_t* FindMin(QzLLTB_t *pNode)
{

while (NULL != pNode->pLeft) {
pNode = pNode->pLeft;

}

return pNode;
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• FindMin – Find replacement key

• Why is this the solution?

static QzLLTB_t* FindMin(QzLLTB_t *pNode)
{

while (NULL != pNode->pLeft) {
pNode = pNode->pLeft;

}

return pNode;
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• DeleteMin – Delete the empty leaf node found by FindMin

QzLLTB_t* LeftLeaningRedBlack::DeleteMin(QzLLTB_t *pNode)
{

// If this node has no children, we're done.
// Due to the arrangement of an LLRB tree, the node cannot have a
// right child.
if (NULL == pNode->pLeft) {

Free(pNode);
return NULL;

}
// If these nodes are black, we need to rearrange this subtree to
// force the left child to be red.
if ((false == IsRed(pNode->pLeft)) && (false == IsRed(pNode->pLeft->pLeft)))
{

pNode = MoveRedLeft(pNode);
}
// Continue recursing to locate the node to delete.
pNode->pLeft = DeleteMin(pNode->pLeft);
// Fix right-leaning red nodes and eliminate 4-nodes on the way up.
// Need to avoid allowing search operations to terminate on 4-nodes,
// or searching may not locate intended key.
return FixUp(pNode);

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• FixUp – As we recurse down the tree, the code will leave right-leaning red nodes as

unbalanced 4-nodes. Recover using FixUp.

static QzLLTB_t* FixUp(QzLLTB_t *pNode)
{

// Fix right-leaning red nodes.
if (IsRed(pNode->pRight)) {
pNode = RotateLeft(pNode);
}
// Detect if there is a 4-node that traverses down the left.
// This is fixed by a right rotation, making both of the red
// nodes the children of pNode.
if (IsRed(pNode->pLeft) & IsRed(pNode->pLeft->pLeft))
{

pNode = RotateRight(pNode);
}
// Split 4-nodes.
if (IsRed(pNode->pLeft) && IsRed(pNode->pRight))
{

ColorFlip(pNode);
}
return pNode;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• DeleteRec – Recursive traversal. This code will leave right-leaning red nodes and

unbalanced 4-nodes as it works down the tree. Will require FixUp.

QzLLTB_t* LeftLeaningRedBlack::DeleteRec(QzLLTB_t *pNode, const U32 key)
{

if (key < pNode->Ref.Key) {
if (NULL != pNode->pLeft) {

// If pNode and pNode->pLeft are black, we may need to
// move pRight to become the left child if a deletion
// would produce a red node.
if ((false == IsRed(pNode->pLeft)) && (false == IsRed(pNode->pLeft->pLeft)))
{

pNode = MoveRedLeft(pNode);
}

pNode->pLeft = DeleteRec(pNode->pLeft, key);
}

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• DeleteRec – Recursive traversal. This code will leave right-leaning red nodes and

unbalanced 4-nodes as it works down the tree. Will require FixUp.

else {
// If the left child is red, apply a rotation so we make
// the right child red.
if (IsRed(pNode->pLeft)) {

pNode = RotateRight(pNode);
}

// Special case for deletion of a leaf node.
// The arrangement logic of LLRBs assures that in this case,
// pNode cannot have a left child.
if ((key == pNode->Ref.Key) && (NULL == pNode->pRight))
{

Free(pNode);
return NULL;

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• DeleteRec – Recursive traversal. This code will leave right-leaning red nodes and

unbalanced 4-nodes as it works down the tree. Will require FixUp.

// If we get here, we need to traverse down the right node.
// However, if there is no right node, then the target key is
// not in the tree, so we can break out of the recursion.
if (NULL != pNode->pRight) {

if ((false == IsRed(pNode->pRight)) && (false == IsRed(pNode->pRight->pLeft)))
{

pNode = MoveRedRight(pNode);
}
// Deletion of an internal node: We cannot delete this node
// from the tree, so we have to find the node containing
// the smallest key value that is larger than the key we're
// deleting. This other key will replace the value we're
// deleting, then we can delete the node that previously
// held the key/value pair we just moved.
if (key == pNode->Ref.Key) {

pNode->Ref = FindMin(pNode->pRight)->Ref;
pNode->pRight = DeleteMin(pNode->pRight);

}
else {

pNode->pRight = DeleteRec(pNode->pRight, key);
}

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• DeleteRec – Recursive traversal. This code will leave right-leaning red nodes and

unbalanced 4-nodes as it works down the tree. Will require FixUp.

}

// Fix right-leaning red nodes and eliminate 4-nodes on the way up.
// Need to avoid allowing search operations to terminate on 4-nodes,
// or searching may not locate intended key.
return FixUp(pNode);

}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Left-Leaning Red-Black Trees Implementation

• Deletion
• Delete – Rely on DeleteRec and also ensure that the root remains black.

void LeftLeaningRedBlack::Delete(const U32 key)
{

if (NULL != m_pRoot) {
m_pRoot = DeleteRec(m_pRoot, key);

// Assuming we have not deleted the last node from the tree, we
// need to force the root to be a black node to conform with the
// the rules of a red-black tree.
if (NULL != m_pRoot) {

m_pRoot->IsRed = false;
}

}
}

Relying on the implementation by Lee Stanza: http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

http://www.teachsolaisgames.com/articles/balanced_left_leaning.html

Thank you

