
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Processing Data in External Storage



Look at External Storage

• External storage

• Used when program reads/writes data to/from a C++ file

• Generally there is more external storage than internally memory

• Direct access files essential for external data collections



Look at External Storage

• External storage

• Used when program reads/writes data to/from a C++ file

• Generally there is more external storage than internally memory

• Direct access files essential for external data collections



Look at External Storage

• Internal and external memory



Look at External Storage

• A file partitioned into blocks of records



Look at External Storage

• Direct access I/O

• Involves blocks instead of records

• Buffer stores data (blocks) temporarily

• Record updated within block (in buffer)

• Work to minimize block I/O

• Takes more time for disk access



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm

• Problem is that not all data are in the internal memory – e.g., not all of them are in an array



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm

• Problem is that not all data are in the internal memory – e.g., not all of them are in an array

• We will use a modified version of mergeSort to overcome this problem



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm

• Problem is that not all data are in the internal memory – e.g., not all of them are in an array

• We will use a modified version of mergeSort to overcome this problem

• The basis of mergeSort is that you can easily merge two sorted segments of data records
into a third sorted segment that is the combination of the two.



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm

• Problem is that not all data are in the internal memory – e.g., not all of them are in an array

• We will use a modified version of mergeSort to overcome this problem

• The basis of mergeSort is that you can easily merge two sorted segments of data records
into a third sorted segment that is the combination of the two.

• If S1 and S2 are sorted segments of records, the first step of the merge is to compare the first record of each
segment and select the record with the smallest sort key.

• If the record from S1 is selected, the next step is to compare the second record of S1 to the first record of S2.

• This process is continued until all of the records have been considered.



Working with External Data

• Sorting data in an external file

• In principle we look to use a sorting algorithm

• Problem is that not all data are in the internal memory – e.g., not all of them are in an array

• We will use a modified version of mergeSort to overcome this problem

• The basis of mergeSort is that you can easily merge two sorted segments of data records
into a third sorted segment that is the combination of the two.

• If S1 and S2 are sorted segments of records, the first step of the merge is to compare the first record of each
segment and select the record with the smallest sort key.

• If the record from S1 is selected, the next step is to compare the second record of S1 to the first record of S2.

• This process is continued until all of the records have been considered.

• The key observation is that at any step, the merge never needs to look beyond the leading edge of either
segment.



Working with External Data

• Example problem: An external file contains 1,600 employee records. You want to sort
these records by Social Security Number. Each block contains 100 records, and thus the
file contains 16 blocks Bi. Assume that the program can access only enough internal
memory to manipulate about 300 records (three blocks) at a time.



Working with External Data

• Example problem:

• An external file contains 1,600 employee records.

• You want to sort these records by Social Security Number.

• Each block contains 100 records, and thus the file contains 16 blocks Bi.

• Assume that the program can access only enough internal memory to manipulate about 300
records (three blocks) at a time.



Working with External Data

• Sorting operation will be organized around two phases:



Working with External Data

• Sorting operation will be organized around two phases:

• Phase 1: Read a block from file F into internal memory, sort its records by using an internal sort,
and write the sorted block out to work file F1 before you read the next block from F. After you
process all (16) blocks of F, F1 contains (16) sorted runs Ri. That is that F1 contains (16) blocks of
records with the records within each block sorted among themselves.



Working with External Data

• Sorting operation will be organized around two phases:

• Phase 1:

• Read a block from file F into internal memory, sort its records by using an internal sort, and
write the sorted block out to work file F1 before you read the next block from F.

• After you process all (16) blocks of F, F1 contains (16) sorted runs Ri. That is that F1 contains
(16) blocks of records with the records within each block sorted among themselves.



Working with External Data

• Sorting operation will be organized around two phases:

• Phase 1: Read a block from file F into internal memory, sort its records by using an internal sort,
and write the sorted block out to work file F1 before you read the next block from F. After you
process all (16) blocks of F, F1 contains (16) sorted runs Ri. That is that F1 contains (16) blocks of
records with the records within each block sorted among themselves.

• Phase 2:

• Phase 2 is a sequence of merge steps.

• Each merge step merges pairs of sorted runs to form larger sorted runs.

• With each merge step, the number of blocks in each sorted run doubles, and thus the
total number of sorted runs is halved.

• The final step merges the two sorted runs into one, which is written to F1. At this point, F1 will
contain all of the records of the original file in sorted order.

• Work file F2 has executed its intermediate role.



Working with External Data

• Sorting operation will be organized around two phases:

• Phase 1: Read a block from file F into internal memory, sort its records by using an internal sort,
and write the sorted block out to work file F1 before you read the next block from F. After you
process all (16) blocks of F, F1 contains (16) sorted runs Ri. That is that F1 contains (16) blocks of
records with the records within each block sorted among themselves.

• Phase 2: Phase 2 is a sequence of merge steps. Each merge step merges pairs of sorted runs to
form larger sorted runs. With each merge step, the number of blocks in each sorted run
doubles, and thus the total number of sorted runs ins halved. The final step merges the two
sorted runs into one, which is written to F1. At this point, F1 will contain all of the records of the
original file in sorted order. Work file F2 has executed its intermediate role.



Working with External Data

• Sorting a block of an external file F by merging the results sorts and using two external work files F1

and F2.



Working with External Data

• Sorting a block of an external file F by merging the results of internal sorts and using two external
work files F1 and F2.



Working with External Data

• How to merge the sorted runs at each step of phase 2?

• Problem statement provides only sufficient internal memory to manipulate at most (300) records at once.

• However, in the later steps of phase 2, runs contain more than 300 records each, so you must merge the
runs a piece at a time.



Working with External Data

• How to merge the sorted runs at each step of phase 2?

• Problem statement provides only sufficient internal memory to manipulate at most (300) records at once.

• However, in the later steps of phase 2, runs contain more than 300 records each, so you must merge the
runs a piece at a time.

• To accomplish this merge, you must divide the program’s internal memory into three arrays, in1, in2 and
out each capable of holding (100 )records (the block size).



Working with External Data

• How to merge the sorted runs at each step of phase 2?

• Problem statement provides only sufficient internal memory to manipulate at most (300) records at once.

• However, in the later steps of phase 2, runs contain more than 300 records each, so you must merge the
runs a piece at a time.

• To accomplish this merge, you must divide the program’s internal memory into three arrays, in1, in2 and
out each capable of holding (100 )records (the block size).

• You read block-sized pieces of the runs into in1 and in2 and merge them into the array out.

• Whenever an in array is exhausted – that is, when all of its entries have been copied to out – you
read the next piece of the run into an in array.

• Whenever the out array becomes full, you write the complete piece of the new sorted runs to one of
the files.



Working with External Data

• Phase 2 of an external sort: Merging sorted runs



Working with External Data

• Phase 2 of an external sort: Merging sorted runs



Working with External Data

• externalMergesort

externalMergesort(unsortedFilename: string, sortedFilename: string)
{

Associate unsortedFileName with the file variable inFile and sortedFilename with outFile
// Phase 1: Sort file block by block and count the blocks
blockSort(inFile,tempFile1,numberOfBlocks)
// Phase 2: Merge runs of size 1,2,4,8,…,numberOfBlocks/2 
// (uses two temporary files and a toggle that tracks files for each merge step)
toggle = 1
for (size = 1 through numberOfBlocks/2 with increments of size)
{

if (toggle == 1)
mergeFile(tempFile1, tempFile2, size, numberOfBlocks)

else
{

mergeFile(tempFile2, tempFile1, size, numberOfBlocks)
toggle = -toggle

}
}
// Copy the current temporary file to outFile
if (toggle==1)

copyFile(tempFile1, outFile)
else

copyFile(tempFile2, outFile)
}



Working with External Data

• externalMergesort

blockSort(inFile: File, outFile: File, numberOfBlocks: integer)

{

prepare inFile for input

prepare outFile for output

numberOfBlocks = 0

while (more blocks in inFile remain to be read)

{

numberOfBlocks++

buffer.readBlock(inFile,numberOfBlocks)

sortArray(buffer) // use some internal sort method

buffer.writeBlock(outFile, numberOfBlocks)

}

close inFile and outFile

}



Working with External Data

• externalMergesort

// Merge blocks from one file to another

// Precondition: nFile is an external file that contains numberOfBlocks sorted blocks organized into 

// runs of runSize blocks each.

// Postcondition: outFile contains the merged runs of inFile. Both files are closed.

// Calls: mergeRuns

mergeFile(inFile: File, outFile: File, runSize: integer, numberOfBlocks)

{

prepare inFile for input

prepare outFile for output

for (next = 1 to numberOfBlocks with increments of 2*runSize)

{

// Invariant: Runs in outFile are ordered

mergeRuns(inFile, outFile, next, runSize)

}

close inFile and outFile

}



Working with External Data

• externalMergesort

// Merges two consecutive sorted runs in a file.
// Precondition: fromFile is an external file of sorted runs
// open for input. toFile is an external file of sorted runs.
// open for output. start is the block nuber of the first run on fromFile to be merged. This run 
// contains size blocks.
// Run 1: Block start to block start + size – 1
// Run 2: Block start + size to start + (2*size) – 1
// Postcondition: The merged runs from fromFile are appended to toFile. The files remain open.
mergeRuns(fromFile: File, toFile: File, start: integer, size: integer)
{

// Initialize the input buffers for runs 1 and 2
in1.readBlock(fromFile, first block of Run 1)
in2.readBlock(fromFile, first block of Run 2)
// Merge until one of the runs is finished Whenever an input buffer is exhauster, the next 
// block is read. Whenever the output buffer is full, it is written.
while (neither run is finished)
{ 

// Invariant: out and each block in toFile are ordered
Select the smallest “leading eldge” of in1 and in2 and place in the next position of out
if (out is full)

out.writeBlock(toFile, next block of toFile)
if (in1 is exhausted and blocks remain in Run 1)

in1.readBlock(fromFile, next block of Run 1)
if (in2 is exhausted and blocks remain in Run 2)

in2.readBlock(fromFile, next block of Run 2)
}



Working with External Data

• externalMergesort

// Assertion: Exactly one of the runs is complete

// Append the remainder of the unfinished input buffer to the output buffer and write it
while (in1 is not exhausted)

// Invariant: out is ordered
Place next item of in1 into the next position of out

while (in2 is not exhausted)
// Invariant: out is ordered
Place next item of in2 into the next position of out

out.writeBlock(toFile, next block of toFile)

// Finish off the remaining complete blocks
while (blocks remain in Run 1)
{

// Invariant: Each block in toFile is ordered
in1.readBlock(fromFile, next block of Run 1)
in1.writeBlock(toFile, next block of toFile)

}
while (blocks remain in Run 2)
{

// Invariant: Each block in toFile is ordered
in2.readBlock(fromFile, next block of Run2)
in2.writeBlock(toFile, next block of toFile)

}
}



Basic Data Management Operations

• Suppose that you have direct access file of records that have search keys like the records we
considered in the ADT Dictionary. The file is partitioned into blocks. Imagine that we store the
records in order by their search key, perhaps sorting the file by using the external mergeSort. Once
sorted, we can traverse the file in sorted order.



Basic Data Management Operations

• Traversal of sorted file (visit method call for each item)

Traverse(dataFile: File, numberOfBlocks: integer, recordsPerBlock: integer, visit: FunctionType)

{ 

// read each block of file dataFile into an internal buffer buf

for (blockNumber = 1 through numberOfBlocks)

{

buf.readBlock(dataFile, blockNumber)

// Visit each record in the block

for (recordNumber = 1 through recordsPerBlock)

Visit record buf.getRecord(recordNumber – 1)

}

}



Basic Data Management Operations

• Retrieval of record from the sorted file using a binary search algorithm

// Searches blocks first through last of the file dataFile for the record whose key equals searchKey
getItem(dataFile: File, recordsPerBlock: integer, first: integer, last: integer, searchKey: KeyType): ItemType
{

if (first > last or nothing is left to read from dataFile)
throw NotFoundException

else
{

// Read the middle block of file dataFile into array buf
mid = (first + last)/2
buf.readBlock(dataFile, mid)
if ((searchKey >= (buf.getRecord(0)).getKey()) &&

(searchKey <= (buf.getRecord(recordsPerBlock-1)).getKey()) )
{

// Desired block is found
Search buffer buf for record buf.getRecord(j) whose search key equals searchKey
if (record is found)

return buf.getRecord(j)
else

throw NotFoundException
}
// Else search appropriate half of the file
else if (searchKey < (buf.getRecord(0)).getKey())

return getItem(dataFile, recordsPerBlock, first, mid-1, searchKey)
else

return getItem(dataFile, recordsPerBlock, mid+1, last, searchKey)
}

}



Basic Data Management Operations

• Shifting across block boundaries

• Costly



Indexing an External File

• Two of the best approaches to external data management utilize variations of the
internal hashing and search-tree schemes.



Indexing an External File

• Two of the best approaches to external data management utilize variations of the
internal hashing and search-tree schemes.

• The biggest difference between the internal and external versions of these approaches is that the external
versions often have an index to the data file rather than an organization of the data file itself.

• An index to a data file is conceptually similar to other indexes.

• An index to the data file is simply another file, called the index file, that contains an index record for each
record in the data file.

• .



Indexing an External File

• Two of the best approaches to external data management utilize variations of the
internal hashing and search-tree schemes.

• The biggest difference between the internal and external versions of these approaches is that the external
versions often have an index to the data file rather than an organization of the data file itself.

• An index to a data file is conceptually similar to other indexes.

• An index to the data file is simply another file, called the index file, that contains an index record for each
record in the data file.

• An index record has two parts:

• a key, which contains the same value as the search key of its corresponding record in the data file,

• a reference, which shows the number of the block in the data file that contains this data record.

• You therefore can locate the block of the data file that contains the record whose search key equals
searchKey by searching the index file for the index record whose key equals searchKey.



Indexing an External File

• A data file with an index



Indexing an External File

• Advantages of an index file

• Index record smaller than a data record

• Data file need not be kept in any particular order

• Possible to maintain several indexes simultaneously

• Index file reduces number of block accesses

• Shift index records, not data records



Indexing an External File

• A data file with a sorted index file



Indexing an External File

• Although we do not organize the data file, we must organize the index file so that we
can search and update it rapidly.

• Example: how to implement retrieval assuming the index file simply stores the index
records sequentially, sorted by their keys as in the Figure.



Indexing an External File
• Example: how to implement retrieval assuming the index file simply stores the index

records sequentially, sorted by their keys as in the Figure.

// Searches the file dataFile for the record whose search key equals searchKey.

// Returns the record if found, else throws NotFound Exception.

getItem(indexFile: File, dataFile: File, searchKey: KeyType): ItemType

{

if (no blocks are left in indexFile to read)

throw NotFoundException

else

{

// Read the middle block of indexfile into object buf

mid = number of middle block of indexFile

buf.readBlock(indexFile, mid)

if ((searchKey > (buf.getRecord(0)).getKey()) &&

(searchKey <= (buf.getRecord(indexrecordsPerBlock – 1)).getKey()))

{

// Desired block of index file found

Search buf for index file record whose key value equals searchKey



Indexing an External File
• Example: how to implement retrieval assuming the index file simply stores the index

records sequentially, sorted by their keys as in the Figure.

if (index record buf.getRecord(j) is found)

{

blockNum = number of the data-file block to which 

buf.getRecord(j) points

data.readBlock(dataFile, blockNum)

Find data record data.getRecord(k) whose search key equals 

searchKey

return data.getRecord(k)

}

else

throw NotFoundException

}

}

// Else search appropriate half of index file

else if (searchKey < (buf.getRecord(0)).getKey())

return getItem(first half of indexFile, dataFile, searchKey)

else

return getItem(second half of indexFile, dataFile, searchKey)

}

}



Indexing an External File

• Because the index records are far smaller than the data records, the index file contains
far fewer blocks than the data file.



External Hashing

• Hashing with an external file is similar to internal hashing.



External Hashing

• Hashing with an external file is similar to internal hashing.

• In the internal hashing scheme, each element of the array table contains a pointer to
the beginning of a chain of data items that hash into that location.



External Hashing

• Hashing with an external file is similar to internal hashing.

• In the internal hashing scheme, each element of the array table contains a pointer to
the beginning of a chain of data items that hash into that location.

• In the external hashing scheme, each element of table still contains a pointer to the
beginning of a chain, but here each chain consists of blocks of index records.

• You hash an index file rather than the data file.



External Hashing

• A hashed index file



External Hashing

• Associated with each entry table[i] is a linked chain of blocks of the index file.

• Each block of table[i]’s linked chain contains index records whose keys (and thus whose
corresponding data records’ search keys) hash into location i.



External Hashing

• Associated with each entry table[i] is a linked chain of blocks of the index file.

• Each block of table[i]’s linked chain contains index records whose keys (and thus whose
corresponding data records’ search keys) hash into location i.

• To form the linked chains, we must reserve space in each block for a block pointer – the
integer block number of the next block in the chain.

• In this linked chain, the pointers are integers, not C++ pointers

• A single block with a pointer



External Hashing 

• Addition when an index file uses external hashing

1. Add data record into data file

2. Add corresponding index record into index file



External Hashing 

• Removal when an index file uses external hashing

1. Search index file for corresponding index record

2. Remove data record from data file



B-Trees

• Another way to search an external data collection is to organize it as a Balanced Search
Tree.

• Concept is analogous to previous: just as you can apply external hashing to an index file,
you can organize the index file, not the data file, as an external search tree.

• Use extensions of 2-3 trees.



B-Trees

• Organize blocks of an external file into a tree structure by using block numbers for child
pointers.



B-Trees

• Organize blocks of an external file into a tree structure by using block numbers for child
pointers.

• Blocks can be organized into a 2-3 tree, each block of the file being a node in the tree
and contains three child pointers, each of which is the integer block number of the child.



B-Trees

• An index file organizes as a 2-3 tree

• If you organized the index file into a 2-3 tree, each node (block of the index file) would
contain either one or two index records, each of the form <key, pointer> and three child
pointers.

• The pointer portion of an index record has nothing to do with the tree structure of the index file;
pointer indicates the block (in the data file) that contains the data record whose search key equals
key.



B-Trees

• Assuming index records in the tree are organized so that their keys obey the same
search-tree ordering property as an internal 2-3 tree then retrieval takes the form:

// Searches the data file for the record whose search key equals searchKey.

// Returns the record if found, else throws NotFoundException

// rootNum is the block number (of the index file) that contains the root of the tree.

getItem(indexFile: File, dataFile: File, rootNum: integer, searchKey: KeyType): ItemType

{

if (no blocks are left in the index file to read)

throw NotFoundException

else

{

// read from index file into internal array buf the block that contains the 

root of the 2-3 tree

buf.readBlock(indexFile, rootNum)

// Search for the index record whose key value equals searchKey



B-Trees

• Assuming index records in the tree are organized so that their keys obey the same
search-tree ordering property as an internal 2-3 tree then retrieval takes the form:

if (searchKey is in the root)

{

blockNum = nmber of data-file block that index record specifies

data.readBlock(dataFile, blockNum)

Find data record data.getRecord(k) whose search key equals searchKey

return data.getRecord(k)

}

// Else search the appropriate subtree

else if (the root is a leaf)

throw NotFoundException

else

{

Find the subtree Si to search

child = block number of the root of Si

return getItem(indexFile, dataFile, child, searchkey)

}

}

}



B-Trees

• How many children the nodes of the search tree can/should have? How big can m be?

• When we want to organize the index file into a search tree, the items that we store in
each node will be records of the form <key,pointer>

• Thus, if each node in the tree is to have m children, it must be large enough to
accommodate m child pointers and m-1 records of the form <key,pointer>

• Choose m to be the largest integer such that m child pointers (which are integers) and
m-1 <key,pointer> records can fit into a single block of the file.



B-Trees

• Number of children per node: you should structure the external search tree so that every
internal node has m children, where m is chosen as just described, and all leaves are the
same level, as is the case with full trees and 2-3 trees.



B-Trees

• Nodes with two, three, and m children and their search keys



B-Trees

• A full tree whose internal nodes have five children



B-Trees

• Although this search tree has the minimum possible height, its balance is too difficult to
maintain when adding or removing nodes.



B-Trees

• Although this search tree has the minimum possible height, its balance is too difficult to
maintain when adding or removing nodes.

• As a consequence, we need to make a compromise.

• We can either insist that all the leaves of the search tree be at the same level – that is, that the
tree be balanced – but we must allow each internal node to have between m and [m/2]+1
children. ([]: greatest integer in.)

• B-Tree of degree m



B-Trees

• B-Tree of degree m properties

• All leaves are at the same level

• Each node contains between m-1 and [m/2] records, and each internal node has one more
child than it has records.

• Exception to this rule is that the root of the tree can contain as few as one record and can
have as few as two children.

• This exception is required by the addition and removal algorithms.



B-Trees

• Adding a record to a B-tree

1. Add data record to data file

2. Add a corresponding index record to index file



B-Trees

• Adding a record to a B-tree

1. Add data record to data file:

• First you find block p in the data file into which you can insert the new record.

• As was true with the external hashing implementation, block p is either any block with a
vacant slot or a new block.

2. Add a corresponding index record to index file:

• You now must add the index record <55,p> to the index file, which is a B-tree of degree 5.

• The first step is to locate the leaf of the tree in which this index record belongs by
determining where the search for 55 would terminate



B-Trees

• A B-tree of degree 5



B-Trees

• The steps for adding 55 to a B-tree (a-d) and splitting the root (e)



B-Trees

• The steps for adding 55 to a B-tree (a-d) and splitting the root (e)



B-Trees

• The steps for adding 55 to a B-tree (a-d) and splitting the root (e)



B-Trees

• Removing a record from a B-tree

1. Locate index record in index file

2. Remove data record from data file



B-Trees

• Removing a record from a B-tree

1. Locate index record in index file

2. Remove data record from data file



B-Trees

• The steps for removing 73 (a to e) and removing the root (f)



B-Trees

• The steps for removing 73 (a to e) and removing the root (f)



B-Trees

• The steps for removing 73 (a to e) and removing the root (f)



B-Trees

• The steps for removing 73 (a to e) and removing the root (f)



B-Trees
• Inorder traversal of the B-tree
// Traverses in sorted order the search keys in an index file that is organized as a B-tree of degree m.

// blockNum is the block number of the root of the B-tree in the index file.

Traverse(blockNum: integer, m: integer): void

{

if (blockNum != -1)

{

// Read the root into internal array buf

buf.readBlock(indexFile, blockNum)

// Traverse the children

// Traverse S0

Let p be the block number of the 0-th child of buf

traverse(p, m)

for (i = 1 through m-1)

{

Display key Ki of buf

// Traverse Si

Let p be the block number of the i-th child of buf

traverse(p, m)

}

}

}



// Traverses in sorted order a data file that is indexed with a B-tree of degree m.

// blockNum is the block number of the root of the B-tree. 

Traverse(blockNum: integer, m: integer): void

{

if (blockNum != -1)

{

// Read the root into internal array buf

buf.readBlock(indexFile, blockNum)

// Traverse S0

Let p be the block number of the 0-th child of buf

traverse(p, m)

for (i = 1 through m-1)

{

Let p_i be the pointer in the i-th index record of buf

data.readBlock(dataFile, p_i)

Extract from data the data record whose search key equals Ki

Display the data reord

// Traverse Si

Let p be the block number of the i-th child of buf

traverse(p, m)

}

}

}

B-Trees
• Sorted order traversal of a datafile indexed with a B-tree



Multiple Indexing

• Multiple index files



Multiple Indexing

• A removal by name must update both indexes

1. Search name index file for jones and remove index record.

2. Remove appropriate data record from data file, noting socSec value ssn of this record.

3. Search socSec index file for ssn and remove tis index record.



Thank you


